
Detecting DoH-Based Data Exfiltration:
FluBot Malware Case Study

Abstract—FluBot is a highly sophisticated Android banking
Trojan that has been actively used in attacks during 2021 and
2022. This paper proposes an approach for detecting FluBot mal-
ware using a machine learning-based DNS-over-HTTPS (DOH)
classifier. Our approach leverages the fact that FluBot communi-
cates with its command and control server using DOH, a secure
protocol that encrypts DNS queries and responses. We collected
a dataset of network traffic traces containing FluBot malware
samples and benign traffic and used it to train a machine-learning
model to classify DOH traffic as either malicious or benign. Our
experimental results show that our DOH classifier achieves high
accuracy and detection rates in identifying FluBot malware while
maintaining a low false positive rate.

Index Terms—malware analysis, DNS-over-HTTPS, covert
channel, traffic classification, DGA detection, FluBot

I. INTRODUCTION

DNS-over-HTTPS (DoH) is a recently developed protocol
that enables unencrypted DNS messages to be transmitted
securely through an encrypted HTTPS channel. While this
protocol provides enhanced security for online activities, it is
also attractive to malware seeking to use it as a command and
control (C2) communication tool. The challenge with DoH is
that it blends in with other HTTPS traffic, making it difficult
for security solutions to detect and analyze it effectively. It can
easily bypass network filters that are designed to block non-
HTTPS traffic. Attackers can use DoH to establish covert, un-
detected communication channels, allowing them to maintain
control of compromised devices and exfiltrate sensitive data.
Compounding the issue, legitimate service providers such as
web browsers and operating systems are increasingly adopting
DoH, providing a cover for malicious traffic. Malware can
use the same encrypted channel as legitimate traffic, making
identifying and blocking malicious traffic challenging without
accidentally blocking it.

One concrete example of such malware is FluBot [1]. It
is a targeted Android banking Trojan that steals sensitive
information such as login credentials and payment card details.
To contact its C2 server, FluBot uses a Domain Generation
Algorithm (DGA). In version 4.9, FluBot resolved the IP
addresses of DGAs and communicated directly with the server
using HTTPS port 443. However, in version 5.0, the authors
of FluBot changed their approach to use DoH for covert
communication with the server. By using DoH, FluBot is able
to exfiltrate data and conceal the content of its communication,
making it difficult to identify as covert communication.

Several works were recently published to distinguish DoH
in HTTPS communication and malicious DoH traffic [2, 3, 4].
The proposed methods either consist of only a classifier for

identifying DoH [5], or provide additional detectors for mal-
ware activities hidden within DoH [2, 3, 4]. The approaches
are based solely on machine learning classification working
with independent network connections. These proposals detect
different kinds of malware [2] or focus on specific strains such
as DGA-based [3].

In this paper, we are proposing a two-layer detection method
to identify malware’s network activity. The first layer utilizes
machine learning to detect DNS-over-HTTPS (DoH) from
Netflow records of network traffic. However, our approach
differs from previous methods by incorporating a second
layer that employs a modification of the Netflow-based DGA
algorithm developed initially by Grill et al. [6] to identify
infected machines. It is important to note that this detection
method is still a work in progress. However, we have already
observed that this approach is successful in applying the
DGA detection algorithm to DoH traffic, even though it
was originally designed for plaintext DNS. Additionally, our
method considers not only single flows but also groups the
traffic generated by the hosts, enabling us to detect malicious
behavior that may be hidden across multiple DoH connections.

II. METHODOLOGY

Our work proposes a two-layer approach to detect malware
activities. In the first layer, we classify DNS-over-HTTPS
(DoH) traffic using a machine learning classifier. The second
layer identifies malware within the identified DoH traffic by
using statistical traffic analysis with previously developed
malware detection algorithms designed for plaintext DNS
traffic [6]. The advantage of this approach is that it allows
the same malware detection algorithm to be used for different
encrypted DNS protocols (e.g., DNS-over-TLS) by plugging
in different classifiers to the first layer.

A. Layer 1: Encrypted DNS traffic classification

This layer identifies DNS-over-HTTPS (DoH) traffic within
HTTPS connections. To achieve this, we trained a DoH
classifier that operates on bi-directional flow records as input.
To extract relevant information from the flow records, we
calculated statistical values such as standard deviation, mean,
and variance from packet sizes and inter-packet arrival times.
These values were then grouped into three categories: incom-
ing, outgoing, and combined. After grouping, we used a robust
scaler to scale the values according to the interquartile range
and then used them as features for the model. The required
data preparation and cleaning are described next within this
section.

1) Data Preparation: The main dataset used for training
and evaluation of the DoH classification models was the col-
lection of DoH traffic provided in [7]. Network flows from the
dataset were extracted using the IPFIXprobe tool, configured
to collect the first 100 packets. To classify DNS-over-HTTPS
(DoH) and non-DoH traffic, statistically significant HTTPS
flows with at least 3 packets were filtered and labeled using
an accompanied list of DoH resolvers IP addresses. Using
this approach, we obtained a total of 150.103 generated DoH,
125.103 real-world DoH, and 75.103 real-world HTTPS traffic
samples, respectively.

After filtering labeling, and data sampling we obtained a
representative dataset containing 41% DoH and 59% non-DoH
flows, which were later split into the train, test, and validation
parts. By incorporating both generated and real-world traffic,
we aimed to increase the diversity of the dataset and make it
more representative of a real-world environment.

To validate the performance of our model, we created a
separate dataset that was partly derived from the validation
split of the design dataset (consisting of 5000 DoH and 5000
non-DoH flows), and partly from the benign traffic collected
from the sandbox network during the model tuning phase of
our study (also consisting of 5000 DoH and 5000 non-DoH
flows).

By incorporating both types of data into the validation
dataset, we were able to assess the performance of our model
not only on the data it was trained on but also on data that it
might encounter in a real deployment scenario. This approach
created a more robust and accurate estimation of the model’s
performance in real-world settings.

2) TLS Handshake Influence Elimination: The first few
packets of a DoH flow consist of a TLS handshake, and
the extracted packet size metadata is more reflective of the
HTTPS server deployment than the actual transmitted traffic.
To improve the accuracy and discrimination power of the
statistical features based on packet sizes, we hypothesized
that reducing the influence of these packets on the computed
features would be beneficial. This approach could also improve
the model’s generalization since the TLS handshake may vary
depending on the resolver used. Overall, by minimizing the
impact of TLS handshake packets on our statistical features,
we aim to enhance the performance and accuracy of our DoH
classifier.

The packet size of the TLS handshake can vary, and
simply skipping these packets may result in losing important
information. To address this, we devised a method to calculate
the statistical features of these packets while considering
their varying packet size. Instead of discarding or treating
these packets equally, we applied weights to the first few
packets based on their position in the handshake sequence.
Specifically, we set a weight for N packets that linearly
increases from 0.1 for the first packet to 1.0 for the N + 1
packet. This ensures that discarding the packets or assigning
a weight of 0.0 will result in the same outcome. By using this
approach, we can calculate the statistical features of the TLS
handshake packets while accounting for their varying packet

size and ensure that no important information is lost in the
process.

In order to determine the best approach for handling TLS
handshake packets, we considered two pairs of integer param-
eters: Nlengths and Mlengths for packet sizes, and Nintervals

and Mintervals for inter-packet arrival times. These parameters
control which packets are skipped and which ones are assigned
linearly increasing weights.

The values of N to M are used to assign weights linearly
to packets starting from N to M , while all following packets
starting from M + 1 are assigned a weight of 1.0. Packets
preceding N weight 0.

To summarize, the four integer parameters form a four-tuple
(Nlengths,Mlengths, Nintervals,Mintervals), which are used
to determine the best combination of skipping and applying
weights to the TLS handshake packets (see Table I).

3) Classification: We trained classification models using
two algorithms: Random Forest (RF) and Histogram-based
Gradient Boosting. In addition, we used Logistic Regression as
the baseline model. The classifiers were trained on the design
dataset and then tuned to optimize their performance.

To evaluate the trained classifiers, we used a prepared vali-
dation dataset and checked several variations of the handshake
influence elimination parameters. We used the area under the
curve (AUC) as a metric for evaluation.

B. Layer 2: Traffic analysis for malware detection

In the second layer of our approach, we utilized a statistical
method proposed by [6] to detect malicious activity in DNS
traffic. This method involves calculating the ratio (1) of DNS
requests and contacted IP addresses for each host in the local
network.

Our idea was that this method, which was initially de-
veloped to detect domain generation algorithm (DGA)-based
malware for plaintext DNS, could also be applied in the
second layer as a malware detector for DoH traffic. Despite
the possibility of classification errors, we believed that this
method could be effective because it is based on the statistical
characteristics of DoH traffic, rather than the content of the
DNS queries or responses.

The ratio ρ(a) represents the specific gravity of contacted
IP addresses per DNS request, and can be used to detect
attacks that involve a relatively high number of queries,
including DGA-based malware, fast-fluxing-based malware,
DNS tunneling, and exfiltration attacks. Of these attacks, DNS
tunneling and exfiltration attacks are particularly relevant to
DoH.

ρ(a) =
δ(a)

π(a) + 1
(1)

In Equation 1, the a is the host in the network, δ(a) values
- number of DNS requests created by the host a, π(a) values
- the number of unique IP addresses contacted by the a.

The overall number of DNS requests δ(a) is linearly de-
pendent on the observed duration, while the rate of increase
of the count of new IPs in the time window is logarithmically

decreases over time. We use ln ρ (2) in our experiments to
make the detection algorithm more robust to the change of
the observed time window duration.

ln ρ(a) = ln
δ(a)

π(a) + 1
(2)

C. Environment Setup

In order to simulate the deployment of our malware detec-
tion algorithm in a production network, we set up a sandbox
network on a Proxmox server. The sandbox network comprised
four virtual machines (VMs): three Android x86 emulators
and one Kali Linux instance. To capture traffic at the network
border, we connected these machines through an OpenWRT
router equipped with the IPFIXprobe tool.

Fig. 1. Timeline of experiments

During the experiments, we utilized three Android VMs to
generate network activity, with one of the machines inten-
tionally infected with malware while the other two remained
uninfected. The timeline for our experiments, as shown in
Figure 1, consisted of two phases: the B1 phase, during which
we fitted the scaler, and the B2 phase, during which we ran
our malware detection algorithm.

D. Description of Experiments

To assess the proposed method’s ability to detect malware in
isolated malicious traffic and malicious mixed with benign, we
conducted two experiments to detect the deliberately infected
machine with FluBot malware:

Experiment 1 – Clean Room Experiment: For this ex-
periment, we infected one Android VM with malware and
configured it to generate isolated malicious traffic while the
other two Android VMs remained uninfected. To generate
benign traffic, we scripted the two uninfected VMs to browse
the top 500 domains reported by Moz [8], with one of them
enabling DNS-over-HTTPS (DoH) in the Chrome browser.
We then applied the trained models to the collected traffic,
testing several variations of TLS handshake elimination tuples,
including a baseline with no elimination.

Experiment 2 – Real-World Scenario: In this experiment,
we intentionally infected an Android machine with the FluBot
malware and also generated benign traffic on the same machine
by randomly browsing the top 500 domains [8]. The goal of
this experiment was to verify whether our proposed method
could effectively detect the infected machine in the presence
of benign browsing interference. To conduct this experiment,
we used the best-performing model from Experiment 1. We
also applied an outlier detection technique based on ARIMA,
which was trained on the first B1 stage. Confidence intervals
were set based on the user’s typical behavior profile to detect
any anomalous behavior caused by the malware accurately.

III. RESULTS AND DISCUSSION

In this section, the preliminary results are presented and
discussed.

First, we built and evaluated a total of 45 models for
the DoH classifier using the Logistic Regression, Random
Forest, and Histogram-based Gradient Boosting algorithms. To
optimize the performance of these models, we tested various
variations of the packet weighting parameters, with values of
N and M ranging from 0 to 6.

TABLE I
TOP 3 MODELS AUC, AND THE BASELINE MODEL

Model Packet skip/weight parameters AUC
(Nlengths,Mlengths,

Nintervals,Mintervals)

RF (baseline) (0, 0, 0, 0) 0.9026
RF (2, 4, 0, 0) 0.9355
RF (2, 4, 2, 4) 0.9324
RF (1, 0, 0, 0) 0.9278

Table I presents the AUC scores for the top 3 models and
the baseline model. The analysis shows that the models which
minimize the influence of the first few packets outperform the
baseline model, confirming our hypothesis.

Next, the results of performed malware detection experi-
ments are provided.

Experiment 1 – Clean Room Experiment: We collected
163 minutes of data from three Android devices for this
experiment, with the model fitting phase (B1) lasting 42
minutes and the model running phase (B2) lasting 120 minutes
(with 60 minutes spent in the infected phase A2). To evaluate
the performance of the DoH detection algorithm, we utilized
the best-performing models from Table I for DoH detection.
Then, we calculated the ln ρ(a) (2) for hosts in the network
as follows to determine infected machines.

First, the ratio for the whole period of collected data was
calculated. To evaluate the algorithm performance with the
given model, the ∆ ln ρ(a) (3) for each run of the experiment
was calculated. The results are presented in Table II.

Initially, the ratio for the entire period of data collection
was computed. To assess the performance of the algorithm
with the selected model, we then calculated the difference of
ratios between benign and malicious samples ∆ ln ρ(a) (3) for
each run of the experiment:

∆ ln ρ = |ln ρ(ainfected)− ln ρ(aclean)| (3)

Table II presents the resulting values. The difference be-
tween the benign and malicious classes ranges from 4 to 6
orders of magnitude, indicating that any of the selected models
can effectively detect the malware. Based on the results,
the (2, 4, 0, 0) model exhibited the highest DoH detection
accuracy and performed well in this experiment. However,
other selected models can be considered, as their results for
malware detection are similar.

Real-time malware detection was simulated by calculating
the ln ρ(a) value for each host in 3-minute windows during the

TABLE II
DIFFERENCE BETWEEN ln ρ(a) OF INFECTED AND BENIGN HOSTS USING

WHOLE COLLECTED DATASET

Model Parameters ∆ln ρ(a) ∆ ln ρ(a)
sensitivity = 0.8 sensitivity = 0.9

RF (0, 0, 0, 0) 6.319705 6.441457
RF (2, 4, 0, 0) 6.157668 6.440201
RF (2, 4, 2, 4) 5.984703 6.487608
RF (1, 0, 0, 0) 4.59773 6.264593

Fig. 2. Time-series visualization of ln ρ(a) for the Experiment 1

B2 period. The best-performing model (Random Forest algo-
rithm with (2, 4, 0, 0) packet weight parameters) is presented
in Figure 2. The moment of infection of host2 is clearly visible
in the time-series plot.

Experiment 2 – Real-World Scenario: In this experiment,
two Android machines were browsing benign websites, and
one was infected with FluBot during the experiment. A total
of 165 minutes of data was collected, with 41 minutes in the
model fitting (B1) phase and 124 minutes in the model running
(B2) phase (62 minutes in the infected A2 phase). The best-
performing DoH detector was used, and the same approach
of detecting infected machines using 3-minute windows were
applied as in the previous experiment.

Fig. 3. FluBot infection moment of Experiment 2

Along with the scaler, in the B1 period, the ARIMA model
was trained for both hosts to learn their normal behavior. The
confidence interval α = 0.05 was used in the B2 period to
detect outliers, detecting the FluBot infection. The algorithm
was able to detect the outlier, which is demonstrated in
Figure 3. It can be seen that after the infection moment, the
value of ln ρ rises above the confidence interval, which can
be interpreted as an indicator of compromise by an automated
system.

IV. CONCLUSION

DoH covert channels have become increasingly popular
among malware, as they allow them to bypass traditional
security solutions enabling undetected communication with
their C2 servers. We presented a novel simple method for
detecting FluBot malware using a two-layer classification
approach. The capabilities of the method were demonstrated in
experiments considering both a sandbox and a more realistic
environment.

Future research aims to improve the detection performance
and consider other malware utilizing DNS-based covert chan-
nels such as DoH, DoT, and DoQ. To achieve this, additional
datasets of DNS covert malicious communications will be
collected, and the ability to attribute such communications
to specific malware families will be improved. Further ex-
periments will be conducted to investigate the validity of the
models and their applicability under realistic conditions.

REFERENCES

[1] H. Salsabila, S. Mardhiyah, and R. B. Hadiprakoso,
“Flubot malware hybrid analysis on android operating
system,” in 2022 International Conference on Informatics,
Multimedia, Cyber and Information System (ICIMCIS).
IEEE, 2022, pp. 202–206.

[2] M. MontazeriShatoori, L. Davidson, G. Kaur, and A. H.
Lashkari, “Detection of doh tunnels using time-series
classification of encrypted traffic,” in 2020 IEEE Intl Conf
on Dependable, Autonomic and Secure Computing. IEEE,
2020, pp. 63–70.

[3] R. Mitsuhashi, Y. Jin, K. Iida, T. Shinagawa, and Y. Takai,
“Detection of dga-based malware communications from
doh traffic using machine learning analysis,” in 2023 IEEE
20th Consumer Communications & Networking Confer-
ence (CCNC). IEEE, 2023, pp. 224–229.

[4] M. Behnke, N. Briner, D. Cullen, K. Schwerdtfeger,
J. Warren, R. Basnet, and T. Doleck, “Feature engineering
and machine learning model comparison for malicious
activity detection in the dns-over-https protocol,” IEEE
Access, vol. 9, pp. 129 902–129 916, 2021.

[5] D. Vekshin, K. Hynek, and T. Cejka, “DoH Insight:
detecting DNS over HTTPS by machine learning,”
in Proceedings of the 15th International Conference
on Availability, Reliability and Security, ser. ARES
’20. New York, NY, USA: Association for Computing
Machinery, Aug. 2020, pp. 1–8. [Online]. Available:
https://doi.org/10.1145/3407023.3409192

[6] M. Grill, I. Nikolaev, V. Valeros, and M. Rehak, “Detect-
ing dga malware using netflow,” in 2015 IFIP/IEEE Inter-
national Symposium on Integrated Network Management
(IM). IEEE, 2015, pp. 1304–1309.

[7] K. Jeřábek, K. Hynek, T. Čejka, and O. Ryšavỳ, “Collec-
tion of datasets with dns over https traffic,” Data in Brief,
vol. 42, p. 108310, 2022.

[8] “Top 500 Most Popular Websites.” [Online]. Available:
https://moz.com/top500

