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Abstract—Abstract: This paper presents a novel approach for
detecting the FluBot malware, an advanced Android banking
Trojan that has been observed in active attacks in 2021 and 2022.
The proposed method uses a two-layer detection mechanism to
identify FluBot network connections. In the first layer, a machine
learning algorithm is used to detect DNS-over-HTTPS (DoH)
within Netflow records. The second layer uses a modified version
of an existing domain generation algorithm (DGA) detection
algorithm to target the DoH connections associated with the
FluBot malware specifically. To evaluate the effectiveness of this
approach, we used a dataset consisting of FluBot network traffic
captured in a controlled sandbox environment. The preliminary
results show that our DoH classifier achieves high accuracy and
detection rates in identifying instances of FluBot malware, while
maintaining a low false positive rate.

Index Terms—malware analysis, DNS-over-HTTPS, covert
channel, traffic classification, DGA detection, FluBot

I. INTRODUCTION

DNS-over-HTTPS (DoH) implements secure domain name
resolution, which primarily improves user privacy, but is
also attractive to malware because it is difficult for security
tools to inspect. Attackers can use DoH to establish covert
communication channels, allowing them to maintain control
of compromised devices and exfiltrate sensitive data.

One concrete example of such malware is FluBot [1]. It
is a targeted Android banking Trojan that steals sensitive
information such as login credentials and payment card details.
To contact its C2 server, FluBot uses a Domain Generation
Algorithm (DGA). In version 4.9, FluBot resolved the IP
addresses of DGAs and communicated directly with the server
using HTTPS port 443. However, in version 5.0, the authors
of FluBot changed their approach to use DoH for covert
communication with the server. By using DoH, FluBot is able
to exfiltrate data and conceal the content of its communication.

Recently, several papers have been published on the iden-
tification of DoH within HTTPS communication and also on
the discovery of anomalous DoH trafficThe proposed methods
either consist of only a classifier for identifying DoH [2],
or provide additional detectors for malware activities hid-
den within DoH [3, 4, 5]. The approaches are based solely
on machine learning classification working with independent
network connections. These proposals detect different kinds
of malware [3] or focus on specific strains such as DGA-
based [4].

In this paper, we are proposing a two-layer detection method
to identify malware’s network activity. The first layer utilizes

machine learning to detect DNS-over-HTTPS (DoH) from
Netflow records of network traffic. However, our approach
differs from previous methods by incorporating a second
layer that employs a modification of the Netflow-based DGA
algorithm developed initially by Grill et al. [6] to identify
infected machines. It is important to note that this detection
method is still a work in progress. However, we have already
observed that this approach is successful in applying the
DGA detection algorithm to DoH traffic, even though it
was originally designed for plaintext DNS. Additionally, our
method considers not only single flows but also groups the
traffic generated by the hosts, enabling us to detect malicious
behavior that may be hidden across multiple DoH connections.

II. METHODOLOGY

Our work proposes a two-layer approach to detect malware
activities. In the first layer, we classify DNS-over-HTTPS
(DoH) traffic using a machine learning classifier. The second
layer identifies malware within the identified DoH traffic by
using statistical traffic analysis with previously developed
malware detection algorithms designed for plaintext DNS
traffic [6]. The advantage of this approach is that it allows
the same malware detection algorithm to be used for different
encrypted DNS protocols (e.g., DNS-over-TLS) by plugging
in different classifiers to the first layer.

A. Layer 1: Encrypted DNS traffic classification

This layer identifies DNS-over-HTTPS (DoH) traffic within
HTTPS connections. To achieve this, we trained a DoH
classifier that operates on bi-directional flow records as input.
To extract relevant information from the flow records, we
calculated statistical values such as standard deviation, mean,
and variance from packet sizes and inter-packet arrival times.
These values were then grouped into three categories: incom-
ing, outgoing, and combined. After grouping, we adjusted the
values according to the interquartile range using a robust scaler
and then used them as features for the model.

1) Data Preparation: The main dataset used for training
and evaluation of the DoH classification models was the col-
lection of DoH traffic provided in [7]. Network flows from the
dataset were extracted using the IPFIXprobe tool1, configured
to collect the first 100 packets. HTTPS flows were tagged
using a list of known DoH resolvers. The dataset provided

1https://github.com/CESNET/ipfixprobe
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150.103 generated DoH, 125.103 real-world DoH, and 75.103

real-world non-DoH HTTPS traffic samples, respectively. We
divided this collection into the train, test, and validation
datasets. By including both generated and real traffic, the goal
was to increase the diversity and representativeness of the data
set.

To validate the performance of our model, we also created
a separate dataset derived partly from the validation design
dataset (consisting of 5000 DoH and 5000 non-DoH flows)
and partly from the benign traffic collected from the sandbox
network during the model tuning phase of our study (also
consisting of 5000 DoH and 5000 non-DoH flows).

2) TLS Handshake Influence Elimination: The first few
packets of a DoH flow consist of a TLS handshake, and the
extracted packet size metadata tends to reflect the HTTPS
server deployment rather than the actual traffic transmitted. To
improve the accuracy and discriminative power of statistical
features based on packet sizes, we hypothesized that reducing
the influence of these packets on the computed features
would be beneficial. This approach could also improve the
generalization of the model since the TLS handshake can vary
depending on the resolver used. Overall, by minimizing the
impact of TLS handshake packets on our statistical features,
we aim to improve the performance and accuracy of our DoH
classifier.

The packet size of the TLS handshake can vary, and
simply skipping these packets may result in losing important
information. To address this, we devised a method to calculate
the statistical features of these packets while considering
their varying packet size. Instead of discarding or treating
these packets equally, we applied weights to the first few
packets based on their position in the handshake sequence.
Specifically, we set a weight for N packets that linearly
increases from 0.1 for the first packet to 1.0 for the N + 1
packet. This ensures that discarding the packets or assigning
a weight of 0.0 will result in the same outcome. By using this
approach, we can calculate the statistical features of the TLS
handshake packets while accounting for their varying packet
size and ensure that no important information is lost in the
process.

In order to determine the best approach for handling TLS
handshake packets, we considered two pairs of integer param-
eters: Nlengths and Mlengths for packet sizes, and Nintervals

and Mintervals for inter-packet arrival times. These parameters
control which packets are skipped and which ones are assigned
linearly increasing weights.

The values of N to M are used to assign weights linearly
to packets starting from N to M , while all following packets
starting from M + 1 are assigned a weight of 1.0. Packets
preceding N weight 0.

To summarize, the four integer parameters form a four-tuple
(Nlengths,Mlengths, Nintervals,Mintervals), which are used
to determine the best combination of skipping and applying
weights to the TLS handshake packets (see Table I).

3) Classification: We trained classification models using
two algorithms: Random Forest (RF) and Histogram-based

Gradient Boosting (HGB). In addition, we used Logistic
Regression (LR) as the baseline model. The classifiers were
trained on the design dataset and then tuned to optimize their
performance.

To evaluate the trained classifiers, we used a prepared vali-
dation dataset and checked several variations of the handshake
influence elimination parameters. We used the area under the
curve (AUC) as a metric for evaluation.

B. Layer 2: Traffic analysis for malware detection

In the second layer of our approach, we utilized a statistical
method proposed by [6] to detect malicious activity in DNS
traffic. This method involves calculating the ratio (1) of DNS
requests and contacted IP addresses for each host in the local
network.

Our idea was that this method, which was initially de-
veloped to detect domain generation algorithm (DGA)-based
malware for plaintext DNS, could also be applied in the
second layer as a malware detector for DoH traffic. Despite
the possibility of classification errors, we believed that this
method could be effective because it is based on the statistical
characteristics of DoH traffic rather than the content of the
DNS queries or responses.

The ratio ρ(a) represents the specific gravity of contacted
IP addresses per DNS request done by the host a and can be
used to detect attacks that involve a relatively high number
of queries, including DGA-based malware, fast-fluxing-based
malware, DNS tunneling, and exfiltration attacks. Of these
attacks, DNS tunneling and exfiltration attacks are particularly
relevant to DoH.

ρ(a) =
δ(a)

π(a) + 1
(1)

In (1), the variable a represents a host in the network. The
term δ(a) refers to the number of DNS requests generated by
host a, while π(a) represents the count of unique IP addresses
contacted by host a.

Assuming the user behavior pattern doesn’t change over
time during the observed time window, the overall number
of DNS requests δ(a) is linearly dependent on the observed
duration. On the other hand, the rate of increase in the count
of new IP addresses within the time window decreases, given
the set of used IP addresses is finite and limited by the user
behavior pattern. Hence, the numerator of the fraction grows
faster than the denominator. To make our algorithm more
robust to the change of the observed time window duration,
we use the following model ln ρ(a) (2) in our experiments.

ln ρ(a) = ln
δ(a)

π(a) + 1
(2)

C. Environment Setup

In order to simulate the deployment of our malware detec-
tion algorithm in a production network, we set up a sandbox
network on a Proxmox server. The sandbox network was
comprised of four virtual machines (VMs): three Android x86
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emulators and one Kali Linux instance. To capture traffic at
the network border, we connected these machines through an
OpenWRT router equipped with the IPFIXprobe tool.

Fig. 1. Timeline of experiments

During the experiments, we utilized three Android VMs to
generate network activity, with one of the machines inten-
tionally infected with malware while the other two remained
uninfected. The timeline for our experiments, as shown in
Figure 1, consisted of two phases: the B1 phase, during which
we fitted the scaler, and the B2 phase, during which we ran
our malware detection algorithm.

D. Description of Experiments

To assess the proposed method’s ability to detect malware in
isolated malicious traffic and malicious mixed with benign, we
conducted two experiments to detect the deliberately infected
machine with FluBot malware:

Experiment 1 – Clean Room Experiment: For this ex-
periment, we infected one Android VM with malware and
configured it to generate isolated malicious traffic. The other
two Android VMs remained uninfected. To generate benign
traffic, we scripted the two uninfected VMs to browse the
top 500 domains reported by Moz [8], with one of them
enabling DNS-over-HTTPS (DoH) in the Chrome browser.
We then applied the trained models to the collected traffic,
testing several variations of TLS handshake elimination tuples,
including a baseline with no elimination.

Experiment 2 – Real-World Scenario: In this experiment,
we intentionally infected an Android machine with the FluBot
malware and also generated benign traffic on the same machine
by randomly browsing the top 500 domains [8]. The goal of
this experiment was to verify whether our proposed method
could effectively detect the infected machine in the presence of
benign browsing interference. To conduct this experiment, we
used the best-performing model from Experiment 1. We also
applied an outlier detection technique based on Autoregressive
integrated moving average (ARIMA), which was trained on
the first B1 stage. Confidence intervals were set based on
the user’s typical behavior profile to detect any anomalous
behavior caused by the malware accurately.

III. RESULTS AND DISCUSSION

In this section, the preliminary results are presented and
discussed.

First, we built and evaluated a total of 45 models for the
DoH classifier using Logistic Regression, Random Forest, and
Histogram-based Gradient Boosting algorithms. To optimize
the performance of these models, we tested various variations
of the packet weighting parameters, with values of N and M
ranging from 0 to 6.

Table I presents the AUC scores for the top 3 models.
In our experiments, the RF models demonstrated the highest

TABLE I
TOP 3 MODELS AUC, AND THE BASELINE MODEL

Model Packet skip/weight parameters AUC
(Nlengths,Mlengths,
Nintervals,Mintervals)

RF (baseline) (0, 0, 0, 0) 0.9026
RF (2, 4, 0, 0) 0.9355
RF (2, 4, 2, 4) 0.9324
RF (1, 0, 0, 0) 0.9278

TABLE II
DIFFERENCE BETWEEN ln ρ(a) OF INFECTED AND BENIGN HOSTS USING

THE WHOLE COLLECTED DATASET

Model Parameters ∆ ln ρ(a) ∆ ln ρ(a)
sensitivity = 0.8 sensitivity = 0.9

RF (0, 0, 0, 0) 6.319705 6.441457
RF (2, 4, 0, 0) 6.157668 6.440201
RF (2, 4, 2, 4) 5.984703 6.487608
RF (1, 0, 0, 0) 4.59773 6.264593

performance. Therefore, we included the RF baseline model
with (0, 0, 0, 0) parameters in the table. The analysis shows
that the models which minimize the influence of the first
few packets outperform the baseline model, confirming our
hypothesis.

Next, the results of performed malware detection experi-
ments are provided.

Experiment 1 – Clean Room Experiment: We collected
163 minutes of data from three Android devices for this
experiment, with the model fitting phase (B1) lasting 42
minutes and the model running phase (B2) lasting 120 minutes
(with 60 minutes spent in the infected phase A2). To evaluate
the performance of the DoH detection algorithm, we utilized
the best-performing models from Table I for DoH detection.
Then, we calculated the ln ρ(a) (2) for hosts in the network
as follows to determine infected machines.

First, we calculated the ratio for the entire duration of the
collected data. To evaluate the performance of the algorithm
using the specified model, we computed the difference in
ratios between benign and malicious samples, denoted as
∆ ln ρ(a) (3), for each experimental run. This difference serves
as a measure of discrimination power, where a higher value
indicates better discrimination between benign and malicious
samples.

∆ ln ρ = |ln ρ(ainfected)− ln ρ(aclean)| (3)

Table II presents the resulting values. The difference be-
tween the benign and malicious classes ranges from 4 to 6
orders of magnitude, indicating that any of the selected models
can effectively detect the malware. Based on the results,
the (2, 4, 0, 0) model exhibited the highest DoH detection
accuracy and performed well in this experiment. However,
other selected models can be considered, as their results for
malware detection are similar.

Real-time malware detection was simulated by calculating
the ln ρ(a) value for each host in 3-minute windows during the
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Fig. 2. Time-series visualization of ln ρ(a) for the Experiment 1

B2 period. The best-performing model (Random Forest algo-
rithm with (2, 4, 0, 0) packet weight parameters) is presented
in Figure 2. The moment of infection of host2 is clearly visible
in the time-series plot.

Experiment 2 – Real-World Scenario: In this experiment,
two Android machines were browsing benign websites, and
one was infected with FluBot during the experiment. A total
of 165 minutes of data was collected, with 41 minutes in the
model fitting (B1) phase and 124 minutes in the model running
(B2) phase (62 minutes in the infected A2 phase). The best-
performing DoH detector was used, and the same approach
of detecting infected machines using 3-minute windows were
applied as in the previous experiment.

Fig. 3. FluBot infection moment of Experiment 2

Along with the scaler, in the B1 period, the ARIMA model
was trained for both hosts to learn their normal behavior. The
confidence interval α = 0.05 was used in the B2 period to
detect outliers, detecting the FluBot infection. The algorithm
was able to detect the outlier, which is demonstrated in
Figure 3. It can be seen that after the infection moment, the
value of ln ρ(a) rises above the confidence interval, which can
be interpreted as an indicator of compromise by an automated
system.

IV. CONCLUSION

DoH covert channels have become increasingly popular
among malware, as they allow them to bypass traditional
security solutions enabling undetected communication with
their C2 servers. We presented a novel simple method for
detecting FluBot malware using a two-layer classification
approach. The capabilities of the method were demonstrated in
experiments considering both a sandbox and a more realistic
environment.

Future research aims to improve the detection performance
and consider other malware utilizing DNS-based covert chan-
nels such as DoH, DoT, and DoQ. To achieve this, additional
datasets of DNS covert malicious communications will be
collected, and the ability to attribute such communications
to specific malware families will be improved. Further ex-
periments will be conducted to investigate the validity of the
models and their applicability under realistic conditions.
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