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Abstract 

Thermostable proteins find their use in numerous biomedical and biotechnological applications. 
However, the computational design of stable proteins often results in single-point mutations with a 
limited effect on protein stability. However, the construction of stable multiple-point mutants can 
prove difficult due to the possibility of antagonistic effects between individual mutations. FireProt 
protocol enables the automated computational design of highly stable multiple-point mutants. 
FireProt 2.0 builds on top of the previously published FireProt web, retaining the original functionality 
and expanding it with several new stabilization strategies. FireProt 2.0 integrates the AlphaFold 
database and the homology modelling for structure prediction, enabling calculations starting from a 
sequence. Multiple-point designs are constructed using the Bron-Kerbosch algorithm minimizing the 
antagonistic effect between the individual mutations. Users can newly limit the FireProt calculation to 
a set of user-defined mutations, run a saturation mutagenesis of the whole protein, or select rigidifying 
mutations based on B-factors. Evolution-based back-to-consensus strategy is complemented by 
ancestral sequence reconstruction. FireProt 2.0 is significantly faster and a reworked graphical user 
interface broadens the tool's availability even to users with older hardware. FireProt 2.0 is freely 
available at http://loschmidt.chemi.muni.cz/fireprotweb. 

 

Introduction 

The thermal stability of naturally occurring proteins often limits their applicability in basic 

research, biotechnology, and pharmaceutical industries1. Protein engineering has emerged as a 

promising approach to overcome these limitations by custom tailoring proteins to enhance their 

usability, even in harsh industrial environments2,3. Random mutagenesis yields reliable results, 

however, its natural success rate is considerably low for protein stability experiments4. Additionally, 

saturation mutagenesis of a significant part of the protein is often not feasible due to the costly and 

laborious protein characterization5,6. Therefore, there is a growing demand for precise and effective 

predictors of protein stability. 

Several in silico tools have been developed for such a task relying on either computationally 

demanding force-field calculations7–12, or most notably one or multiple machine learning techniques13–
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19. Physical effective energy functions are closely related to classical molecular mechanic force-fields 

allowing for a fundamental analysis of the molecular interactions20. Physical force-fields are relatively 

accurate and capable of predicting the behaviour of the proteins under non-standard conditions such 

as elevated temperature, non-standard salinity, or non-physiological pH21. However, their versatility is 

burdened by high computational demands that can be lowered by partially or fully replacing terms in 

the energy-field equation by statistical potentials derived from the curated datasets of experimental 

protein structures projected into stability descriptors22,23. While the predictive power of the force-field 

methods is unmatched by other approaches, their further development is limited by our current level 

of understanding of the physical and biochemical forces in the protein and the available computational 

resources24. Moreover, the scoring functions neglect or approximate some terms that lower the 

accuracy of the prediction including protein solvation, dynamics, and evaluation of unfolded states 

necessary for good estimation of thermodynamic cycle. Additionally, force-field methods rely on the 

availability of high-quality 3D structures that are yet to be well-compensated by structure models 

significantly improved by novel methods like AlphaFold25. 

Machine learning represents a faster alternative to robust force-field calculations that can 

unearth new features and dependencies unbound by the current knowledge of biochemical forces. 

The applicability of the machine learning techniques is strongly dependent on the quality and diversity 

of training and testing datasets. Several databases26,27 and mutation datasets28 were constructed over 

the years. However, they contain a relatively low number of mutations with significant 

overrepresentation of the destabilizing mutations and an insufficient number of some mutation types, 

e.g. the charge-changing mutations. Furthermore, these datasets usually do not consider the effect of 

experimental conditions on protein stability and other characteristics. The pH of the solution has a 

significant effect on the contribution of the charge-charge interactions that decrease with higher salt 

concentration29. The differences in the experimental techniques can significantly exceed the average 

experimental error of 0.48 kcal/mol30. A large portion of available protein stability data is also 

measured as a change in melting temperature, while the vast majority of predictive tools estimate the 

change of Gibbs free energy upon mutation. The free energy of the proteins varies non-linearly with 

temperature as the stability of proteins generally decreases at lower temperatures31. Therefore, 

thermostability data cannot be well utilized due to the correlation between melting temperature and 

free energy to be about 0.7132. Next to a limited amount of high-quality data, the recent study by 

Caldararu and coworkers has shown that only a few physico-chemical features significantly affect the 

predictions of the effect of mutations on protein stability33. 

In recent years, some of the tools have tried to overcome these issues of machine learning 

predictors by i) moving from standard methods such as random forests or support vector machines to 

convolutional neural networks34–38 and other deep learning techniques39, ii) by utilizing more complex 

structural features40,41 and protein dynamics42, or iii) by including temperature dependant features to 

be able to predict changes in melting temperature32. Meta predictors also increase the accuracy of the 

machine learning predictions by combining multiple tools and models43,44, or by completing machine 

learning models with statistical potentials45,46. Furthermore, an apparent bias towards the destabilizing 

mutations caused by the unbalanced dataset47–49 is being addressed by including reverse mutations in 

the training datasets50,51. However, most of the tools deal with only single-point mutations, and while 

several multiple-point predictors45,46,50,52,53 have surfaced recently, their limited reliability and 

potentially antagonistic effect of mutations make it still challenging to utilize these predictions to 

construct stable multiple-point mutants.  

FireProt method54, initially published in 2015, stands out as one of the few methods55,56 that 

take an opposite approach to the design of stable proteins. Rather than evaluating a set of user-defined 



mutations, FireProt suggests potentially stabilizing mutations for the target protein. The web version 

of FireProt57 made the strategy of automated design of multiple-point mutants accessible to a broader 

user community, analogously to the PROSS web server, developed by Sarel Fleischman and 

coworkers58. The new version, FireProt 2.0, retains all the original functionality while introducing 

several new strategies and user experience improvements. The updated server provides users with 

two subsets of multiple-point designs. The low-risk designs are subjected to strict filtration of 

stabilizing mutations based on protein structure, multiple-sequence alignment, and physico-chemical 

properties. The high-risk designs are much more lenient and enforce only position-specific conditions. 

Both low- and high-risk multiple-point designs are constructed using a novel approach based on the 

Bron-Kerbosch algorithm59 minimizing the antagonistic effect among individual mutations. 

FireProt 2.0 allows users to limit calculations to a set of user-defined mutations, to run 

saturation mutagenesis of the entire protein, or to select modifications based on B-factors analysis60. 

The fully automated prediction of stabilizing mutations based on ancestral sequence 

reconstruction61,62 is now available as a second evolution-based strategy. FireProt 2.0 also utilizes 

models of tertiary structures based on deep neural networks downloaded from the AlphaFold 

database25 and homology models constructed using ProMod363. Compared to its predecessor, the 

updated version is significantly faster, reducing calculation time from over a week to several days. 

Reworked comprehensive graphical user interface with integrated Mol* visualizer64 enhances the 

tool's usability for users with older hardware and offers a high degree of variability, enabling users to 

tailor their calculations to their intended stabilization goals. A vast range of optimization strategies 

broadens the tool's usability within the scientific, medical, and industrial communities. 

 

Methods 

FireProt 2.0 uses three main approaches for the identification of potentially stabilizing 

mutations: (i) energy-based approach, (ii) evolution-based (back-to-consensus), and (iii) ancestral 

reconstruction-based. The energy-based approach predicts the free energy change upon mutation by 

force-field calculations, while the evolution-based approach benefits from well-established back-to-

consensus analysis. The ancestral design branch utilizes a fully automated ancestral sequence 

reconstruction workflow. Prior to the computationally demanding calculations in each approach, 

several predictive tools and database queries are employed to annotate the protein of interest with 

various sequence and structural information. This information is then utilized to narrow down the 

initial set of potential mutations. The entire workflow of the FireProt method is shown in Figure 1. 



 

Figure 1: FireProt 2.0 can be started from either protein structure or protein sequence utilized for the construction of the 
homolog model (grey). Sequence conservation and evolutionary correlation scores are estimated using JSD and the consensus 
of seven predictive tools, respectively (green). Those annotations serve as filters for the following calculations separated into 
three main branches identifying potentially stabilizing single-point mutations: i) ancestral reconstruction employing a full 
FireProt-ASR workflow (yellow), ii) force-field predictions using FoldX and Rosetta (red), and iii) back-to-consensus analysis 
(blue). In the last step, individual sets of stabilizing single-point mutations are processed in pairs using FoldX, and 
implementation of the Bron-Kerbosch algorithm is utilized to identify cliques with the best energy evaluations to construct 
stable multiple-point mutants (purple). Finally, mutant structures are modelled by ProMod3 and provided to the user (grey). 

 

Input and annotation of the target protein 

The FireProt calculation can be initiated from either the structure or sequence of the target 

protein. The user can upload a PDB file or provide its PDB ID to provide structural information. The 

MakeMultimer tool (http://watcut.uwaterloo.ca/tools/makemultimer/) automatically generates 

the biological assembly, and the user can select the preferred one if multiple biological assemblies are 

available. Additionally, the calculation can be limited to user-defined chains. The user can provide the 

raw/FASTA amino acid sequence or UniProt65 ID of the target protein as the sequence input. The 

AlphaFold database25 is queried to get a model structure if the UniProt ID is provided. Otherwise, a 

http://watcut.uwaterloo.ca/tools/makemultimer/


BLAST66 search against the PDB database67 is performed to obtain a structure template for the 

ProMod363 calculation. 

To annotate the protein, the SwissProt database68 is searched using the protein sequence 

obtained from the user input or PDB file to remove essential residues from further analysis. Next, the 

UniRef90 database69 is searched by the BLAST algorithm to obtain a set of sequence homologs. 

Sequences with an identity outside of user-defined thresholds (30% and 90% by default) are excluded, 

and the remaining sequences are clustered using UCLUST70 with a 90% identity threshold by default. 

The cluster representatives are sorted based on the BLAST query coverage, and up to 200 sequences 

are selected to construct a multiple-sequence alignment using Clustal Omega71. The conservation 

coefficient of each residue in the multiple-sequence alignment is estimated by calculating the Jensen-

Shannon entropy72 and amino acid frequencies at the individual positions are stored for filtering in the 

next steps. Correlated positions are identified using a consensual decision of the OMES73, MI74, aMIc75, 

DCA76, SCA77, ELSC78, and McBASC79 methods. Finally, the average B-factor values are computed for all 

protein residues80. 

Design of single-point mutations 

The FireProt protocol has been expanded to include three branches for identifying potentially 

stabilizing single-point mutations: (i) energy-based, (ii) evolution-based, and (iii) ancestral 

reconstruction-based. The protein structure is amended and minimized using FoldX7 and Rosetta9 prior 

to force-field calculations. The filters are applied to exclude potentially deleterious mutations and 

accelerate the process. Suggested mutations in essential residues, conserved (conservation score 4 or 

lower), and correlated (consensus score 3.5 or higher by default) positions are considered unsafe and 

are omitted81–87. Additional filters may also be applied, such as disallowing changes to amino acid 

charges on the protein surface88 or omitting mutations not present in the multiple-sequence 

alignment. Saturation mutagenesis is then performed using the FoldX suite (PssmStability module, 

threshold set for -1 kcal/mol by default), and potentially stabilizing mutations are forwarded to the 

more comprehensive Rosetta calculations (ddg_monomer module, threshold set for -1.5 kcal/mol by 

default). The mutations passing both FoldX and Rosetta thresholds are considered for designing 

multiple-point mutants. 

The evolution-based approach identifies potentially stabilizing mutations through the back-to-

consensus analysis. Mutations are selected from either the majority or frequency ratio approach. The 

majority approach discovers mutations at positions where the consensus residue is present in at least 

50% of all analysed sequences. In comparison, the ratio approach lowers the frequency threshold to 

40% with the condition that the consensus residue is at least five times more represented than the 

wild-type amino acid. FoldX evaluates consensus mutations, and the stabilizing ones (threshold set for 

0.5 kcal/mol by default) are listed as candidate mutations for designing multiple-point mutants. 

In the ancestral reconstruction-based approach, the phylogenetic tree and ancestral 

sequences are calculated using the FireProt-ASR method62. Initially, a reduced set of biologically 

relevant sequences is aligned, and the phylogenetic tree is constructed. The phylogenetic tree is then 

rooted using the minimal ancestral deviation algorithm89, and the ancestral posterior probabilities for 

individual amino acids are calculated with the Lazarus package90. A custom gap correction algorithm is 

then applied to fill gaps in the reconstructed ancestral sequences62. Finally, the ancestral sequence of 

each internal node between the query sequence and the root of the phylogenetic tree is pair-wise 

aligned to the query sequence of the target protein, and the substitutions are selected for further 

analysis as potentially stabilizing mutations. 

 



Design of multiple-point mutations 

FireProt provides users with up to six designs based on the selected analysis. These designs 

include energy-based, evolution-based, and ancestral reconstruction-based approaches and combined 

mutants constructed from multiple pools of potentially stabilizing mutations. The energy-based and 

combined mutants are offered in two variants, reflecting the confidence of predictions: (i) high-risk 

and (ii) low-risk designs. The high-risk mutants are designed for high-risk/high-reward scenarios, 

allowing for mutations not present in the sequence alignment and charge-changing mutations 

positioned on the protein surface. However, these mutations can negatively impact protein folding, 

and their energetic contributions can be difficult to estimate since force-fields can overestimate their 

effects on stability due to the bias caused by high concentrations of salts in protein crystallization. In 

contrast, the low-risk designs are constructed with all filters enabled to introduce only the safe 

mutations. These differentiated scenarios offer flexibility to the users, depending on preferred 

engineering strategy, allocated resources, access to gene synthesis technologies, availability of 

infrastructure for experimental validation, and experimental conditions. All FireProt calculations are 

processed for the physiological pH of 7, and therefore, high-risk mutations can be easily considered for 

the experiments conducted under non-physiological pH or in solutions with high salt concentration29. 

As multiple-point designs cannot be blindly constructed by a combination of individual 

stabilizing mutations due to the potential antagonistic effects, FireProt minimizes those risks by 

utilizing FoldX7 and Bron-Kerbosch algorithm59. In the first step, FoldX separately evaluates all pairs of 

single-point mutations within a 10 Å range for the energy-based and evolution-based approaches using 

the BuildModel module. Modifications outside of the 10 Å range are considered additive without 

further analysis. A graph representation of the available mutations is then constructed using the free-

energy predictions of individual mutations as nodes and the pair predictions as the edges of the full 

graph. Antagonistic edges (pairs of mutations with the worse energy compared to the higher stabilizing 

of the two) are removed from this graph. Bron-Kerbosch algorithm is then used to identify cliques in 

the graph, and the clique with the highest evaluation of individual mutations is selected for the 

multiple-point design. Once the energy- and evolution-based designs are completed, the procedure is 

repeated, considering only the pairs between mutations chosen in previous designs, thus constructing 

combined multiple-point mutants. 

 

Description of the web server 

Input 

The FireProt web server requires the tertiary structure of the target protein, which can be 

provided as a PDB ID or a user-defined PDB file (Figure 2A). Alternatively, users can input a custom 

protein sequence or UniProt identifier to download the structure from the AlphaFold database or build 

the model by homology modelling. Users can also choose a predefined biological unit generated by 

MakeMultimer or limit the calculation to the set of manually selected chains. 

FireProt offers two mutually exclusive modes – Automated design analysing the whole protein 

structure and User-defined analysis of particular positions. The Automated mode (Figure 2D) enables 

the identification of potentially stabilizing single-point mutations via the Automated single-point panel 

which enables saturation mutagenesis of all mutable positions, flexibility analysis using B-factors, and 

back-to-consensus analysis. Users can select low- and high-risk scenarios in the Automated multiple-

point panel for the multiple-point designs to be constructed out of the pools of potentially stabilizing 

single-point mutations. It is also possible to start an ancestral sequence reconstruction analysis from 



this panel. Alternatively, the User-defined mode (Figure 2F) is intended for users looking to evaluate a 

specific set of mutations in a shorter period. Multiple mutations can be marked for thorough analysis 

by all available tools for each selected position. 

The user can also select essential residues from the SwissProt database or provide them 

manually (Figure 2B). The Advanced settings checkbox expands the list of adjustable parameters for (i) 

construction of the sequence dataset used for multiple-sequence alignment, (ii) identification of 

consensus residues, (iii) stability thresholds used by FoldX and Rosetta, and (iv) decision threshold 

employed in the analysis of correlated positions. Advanced mode allows expert users to fine-tune the 

parameters for their system of interest. However, default values were optimized to provide reliable 

results in most systems, and it is recommended not to change them in general scenarios. 

Output 

Upon submission, the user is redirected to the output page which can also be accessed later 

using a unique identifier assigned at the beginning of the calculation. The Report panel on the output 

page informs the user about the status of each step of the FireProt analysis and provides a log of any 

potential issues encountered during the calculation. Once all calculations are completed, the output 

page is updated with several new panels, as described below. 

Protein visualisation 

The web server provides an interactive visualization of the wild-type structure of the target 

protein using the Mol* library64 (Figure 2C). This module allows users to switch between different 

protein visualization styles, analyse protein sequence, and highlight selected amino acids in the protein 

structure. In addition, the Visualization module is connected to the Results panel, which enables users 

to visualize selected mutations directly in the protein structure. 

Results panel 

The results of the FireProt analysis are presented in several tabs based on the set of analyses 

selected during the input phase (Figure 2E). The All Residues tab provides the available information for 

each residue. Additional tabs are dedicated to individual multiple-point designs: (i) the Consensus tab 

presents information from the back-to-consensus analysis, (ii) the Energy low-risk and the Energy high-

risk tabs report multiple-point mutants resulting from two respective scenarios of the energy-based 

approach, iii) the Combined low- and high-risk tabs presenting a combination of consensus mutations 

with the low- and high-risk energy-based mutants, and (iv) the Ancestral design tab showing single-

point mutations obtained from the ancestral sequence reconstruction using the FireProt-ASR method. 

Custom design 

The Custom Design panel offers users the possibility to create their multiple-point designs by 

selecting mutations from the lists available in the individual tabs of the Results panel. After selecting 

the desired mutations by the plus button, users can generate a custom FASTA sequence by clicking on 

the Generate sequence button. In addition, users can download all available data related to their 

FireProt and user-defined designs by clicking on the Download data button. The downloaded .zip 

archive contains the PDB structure, multiple-sequence alignment, PDF report, raw data in .xml and .csv 

formats, as well as the FASTA sequences of all FireProt and user-defined designs. 



 

Figure 2: Graphical user interface of FireProt presenting the analysis of the haloalkane dehalogenase DhaA (PDB ID 4E46). (A) 
Input page allowing users to start from either protein sequence or structure. (B) The table reporting the essential residues 
identified in the SwissProt database. (C) The Mol* visualization of the wild-type structure of the protein of interest. (D) Analysis 
selection showing options of the fully automated calculation. (E) Energy high-risk table providing a list of potentially stabilizing 
mutations with their conservation scores and free energy predictions. (F) Selection of the positions and mutations in the user-
defined mode. 

 

Validation 

To evaluate the robustness of our web server, we have collected an experimental dataset of 

nine highly mutated proteins from FireProtDB26 counting 861 mutations (Supplementary Table S1) 

separated from the original S1573 dataset utilized for FireProt parametrization57. Using this dataset, 

we have calculated sensitivity, specificity, and false discovery rates of individual steps of the FireProt 

workflow and compared them to some of the novel tools for the prediction of the effect of mutations 

on protein stability (Table 1). While both FoldX and Rosetta show relatively high sensitivity and 

specificity, their false discovery rates stand at around 50 % meaning that about half of the predicted 

potentially stabilizing mutations are destabilizing. Using the consensual prediction of both FoldX7 and 

Rosetta9, we can observe a notable decrease in sensitivity with every third predicted stabilizing 

mutation to be a false positive. The false positive rate can be completely mitigated by filtering out 



conserved and correlated residues and by moving the decision threshold from 0 kcal/mol to default 

values of -1.0 and 1.5 kcal/mol for FoldX and Rosetta, respectively. This comes with the price of 

significantly lower sensitivity as only about 10 % of mutations pass all of the criteria as compared to 

the FoldX or Rosetta alone. However, low sensitivity with a nullified false discovery rate is the intended 

goal of the FireProt protocol as the mutations suggested to the user are generally safe to design as 

multiple-point mutants. In Table 1, we have also compared FoldX and Rosetta with DDGun50 and 

DynaMut242 showing still preserving superiority of the force-field approaches over the recent machine 

learning tools.   

 

Table 1: Evaluation of the individual steps of the energy approach of the FireProt method. The first two lines show the 
sensitivity, specificity, and false discovery rates of FoldX and Rosetta with a decision threshold set at 0 kcal/mol. With 
FoldX+Rosetta, only the mutations passing both FoldX and Rosetta thresholds are considered stabilizing. The next two lines 
show the results of the combination of FoldX and Rosetta with decision thresholds set to -1 and 1.5 kcal/mol, respectively, and 
with including conservation and correlation scores as additional filters. DDGun and DynaMut2 are included for comparison 
with novel machine learning tools. 

TYPE TP FP TN FN SENSITIVITY SPECIFICITY FALSE DISCOVERY RATE 

FOLDX 80 94 641 46 0.635 0.872 0.540 
ROSETTA 68 63 672 58 0.540 0.914 0.481 
FOLDX+ROSETTA 54 27 708 72 0.429 0.963 0.333 
+THRESHOLDS 11 0 735 115 0.087 1.000 0.000 
+CONSERVATION 7 0 735 119 0.056 1.000 0.000 

DDGUN 70 153 582 56 0.556 0.792 0.686 
DYNAMUT2 59 86 649 68 0.468 0.883 0.593 

 

In the next step, we have compared the results of FireProt with PROSS56, the only direct 

competitor for automated design of multiple-point mutants (Supplementary Table S2). Across nine 

proteins in the testing dataset, PROSS identified 140 mutations in the total of 81 protein designs (9 

designs per protein with different levels of confidence). Out of the 140 mutations, 35 mutations were 

also identified by FireProt and 22 more positions were suggested with different amino acids. 

Considering only the top half of the safer designs provided by PROSS, 23 out of 36 mutations were also 

identified by FireProt. PROSS predictions largely overlap with FireProt’s evolution-based designs as 63 

out of 140 mutations (14 out of 36 in the safe designs) are charge-affecting mutations. Charged 

mutations are generally prohibited in FireProt’s energy-based design as charged residues on the 

protein surface are often targeted by force-field methods while playing an important role in protein 

folding91. However, charge-affecting mutations are still viable in the FireProt’s high-risk designs and 

can be commonly found in the consensus design relying on evolution rather than force-field methods. 

Mutations obtained from the ancestral sequence reconstruction were considered only if the mutation 

was present in multiple ancestral designs due to the large amount of mutations observed close to the 

root of the phylogenetic tree. 

Finally, we have collected over twenty studies from the literature, where the original FireProt 

method (equivalent to the Combined high-risk design) was utilized for the protein stabilization 

(Supplementary Table S3). Listed studies report an increase of melting temperature by up to 14°C92 

and up to 160-fold improvement of the protein’s half-life93. The optimal temperature of wild-type 

proteins ranges from 35 to 80°C. Baseline FireProt protocol was utilized to obtain a highly stabilized 

haloalkane dehalogenase DhaA by introducing mutations strengthening the interactions around the 

protein’s access tunnel while preserving its catalytic activity94. The ancestral sequence reconstruction 

algorithm implemented in the new version of the FireProt web was also reported to improve the 



stability of haloalkane dehalogenase by up to 24°C62. Furthermore, a recent study by Livada et. al.95 

evaluated the method on 56 ancestral sequences from which 94% have shown higher or similar 

stability compared to the wild-type proteins with 56% of the ancestral proteins improving the melting 

temperature by more than 5°C with an average improvement of 9°C. Concerning the consensus 

designs, the proportion of the destabilizing mutations has been estimated to be approximately 40% 

among all characterized variants96,97. 

 

Conclusions 

FireProt web57 is a fully automated tool that enables even inexperienced users without prior 

knowledge of bioinformatics tools and biological systems of interest to design a set of stable mutant 

proteins. It eliminates the need to install and set up the individual tools as the default parameters and 

computational protocols have been optimized to accelerate the calculation while maintaining 

prediction accuracy. FireProt 2.0 represents a significant advancement in the FireProt method54, which 

has already been used to analyse over 6,500 proteins since its first release in 2017. This analysis led to 

a design of more stable mesophilic and thermophilic proteins with increased melting temperature by 

up to 14°C92 and up to 160-fold improvement of the protein’s half-life93. The new version of the FireProt 

web was also complemented with the ancestral sequence reconstruction algorithm that was 

previously utilized for the successful stabilization of haloalkane dehalogenase62, Renilla luciferase98, 

and Ene reductase95. Furthermore, users are offered with an extended range of available strategies, 

including low-and high-risk scenarios of the original designs. This feature allows users to fine-tune their 

risk/reward ratio by enabling filters that make the final designs safer yet more conservative to produce. 

The previous FireProt version was often used to design and experimentally characterize only single-

point mutants. Therefore, FireProt provides all data for the selection of single-point mutations and also 

information obtained from B-factor analysis80. FireProt analysis can now also be started from the 

protein sequence only, using the AlphaFold database25 and ProMod363 modelling, which broadens the 

number of target proteins by several orders of magnitude. The updated graphical user interface, which 

employs current technologies, has expanded the tool's availability to users with older hardware, 

enhancing its usability for the wide range of scientific, medical, and industrial communities. Finally, 

compared to its predecessor, FireProt 2.0 computational demands were significantly decreased due to 

the reworked multiple-point mutant construction algorithm from up to a week to less than a day for 

an average size protein of 300 amino acids. However, the actual calculation time can be higher due to 

the queue occupancy and the current load on the computational resources. The robustness of the web 

server was thoroughly tested on a set of 42 diverse proteins. 

In the future, FireProt will incorporate new strategies, such as checking the back-bone integrity 

using ProteinMPNN99 or removing potentially destabilizing mutations using the novel machine-

learning model trained over the manually curated protein stability data from the recently established 

database FireProt DB26. Design of disulfide bridges and reinforcing protein multimerization by methods 

like RF Diffusion100 may further extend the functionalities of the FireProt web server and the charge 

interactions can be optimized using the methods like TKSA-MC101–103. Furthermore, predictions of 

stabilizing mutations can be combined with designs aiming at improving protein solubility and 

suppressing protein aggregation, or by considering the changes in the accessible surface area104. Those 

further improvements could potentially mitigate the issue of stability/solubility88/activity105,106/heat 

capacity107 trade-off designing versatile and well-applicable proteins. 

 

Data availability 



FireProt 2.0 is a web server available at https://loschmidt.chemi.muni.cz/fireprotweb/.  
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