
Rise of the Metaverse’s Immersive Virtual Reality Malware and the
Man-in-the-Room Attack & Defenses

Martin Vondráčeka, Ibrahim Baggilib,∗, Peter Caseyc, Mehdi Meknid

aFaculty of Information Technology, Brno University of Technology, Božetěchova 2/1, 612 00 Brno, Czech Republic.
bLouisiana State University

College of Engineering & Center for Computation and Technology, Baton Rouge, LA 70803 USA
cUniversity of New Haven, West Haven, CT 06516 USA

dUniversity of New Haven, Laboratory for Applied Software Engineering Research (LASER), West Haven, CT 06516 USA

Abstract

The allure of the metaverse along with Virtual Reality (VR) technologies and speed at which they are deployed may
shift focus away from security and privacy fundamentals. In this work we employ classic exploitation techniques against
cutting edge devices to obtain equally novel results. The unique features of the Virtual Reality landscape set the stage
for our primary account of a new attack, the Man-in-the-Room (MitR). This attack, realized from a vulnerable social
networking application led to both worming and botnet capabilities being adapted for VR with potential critical impacts
affecting millions of users. Our work improves the state-of-the-art in Virtual Reality (VR) security and socio-technical
research in VR. It shares several analytical and attacking tools, example exploits, evaluation dataset, and vulnerability
signatures with the scientific and professional communities to ensure secure VR software development. The presented
results demonstrate the detection and prevention of VR vulnerabilities, and raise questions in the law and policy domains
pertaining to VR security and privacy.

Keywords: Emerging technologies; Network-level security and protection; Network communications; Network
Protocols; Protection mechanisms; Quality analysis and evaluation; System issues; Security and Privacy Protection;
Authentication; Communications Applications; Artificial, augmented, and virtual realities; Virtual reality; Security and
Protection; Invasive software (viruses, worms, Trojan horses); Unauthorized access (hacking, phreaking);

Virtual Reality (VR) aims to create “immersive, inter-
active, and imaginative” simulations for the user through
visual, haptic, and auditory output [1, 2]. It is produced
by a computer system that emulates realistic scenes to pro-
vide convenience for users to experience the virtual world.
As an emerging human-computer interaction technology,
VR uses several systems including voice input/output, mo-
tion sensing, network communication, computer graphics,
and wide-angle stereo display systems. The applications of
VR are gradually expanding, including but not limited to
entertainment, education, healthcare, and military [3]. VR
headsets have existed since the 1960s, one of the first de-
vices that could be considered VR Head-mounted Display
(HMD) was presented by [4]. Commercial applications of
VR can be dated back to 1980s [5], where we can also find
steps towards VR social applications such as VPL’s Real-
ity Built for Two [6, 7]. Affordable VR equipment is fairly
recent to the consumer market [8], a headset with fully-
embodied VR capabilities—the Oculus Rift Development

∗These authors contributed equally to this work
Email addresses: vondracek.mar@gmail.com

(Martin Vondráček), ibaggili@lsu.edu (Ibrahim Baggili),
pgrom1@unh.newhaven.edu (Peter Casey),
pgrom1@unh.newhaven.edu (Mehdi Mekni)

Kit 1—became available in 2013 and its consumer version
was released in 2016 [9]. The VR market has been growing
ever since, with revenues projected to grow from $12B to
a $100B in the next five years [10].

Recent technological and manufacturing improvements
in VR tilted the major use case towards entertainment by
home consumers. The Steam platform[11], both a par-
tial subject of this study and popular game/application
marketplace, estimated VR usage has doubled in 2018
and number of monthly-connected VR headsets reached
2 million in 2020 [12, 13, 14]. Furthermore, demand for
VR games and applications grew with sales up 71% in
2020 [15]. And the excitement for VR continues as Steam
reported that VR userbase grew 11% with unique play
sessions up 22% in 2021 [16].

While VR allows users to experience games, movies,
and events with much greater presence and immersion
than traditional mediums, the user’s ability to interact
with the Virtual Environment (VE) and peers elevates VR
above other entertainment sources. This has benefited so-
cial interactions in particular, where not only are audio
and video shared, but also a common space and simu-
lated movements. In a 2018 survey, 77% of respondents
reported an interest in more VR social interaction [17].

Preprint submitted to Elsevier September 21, 2022

Many companies have brought social networking to VR,
such as Facebook Horizon (previously known as Facebook
Spaces), AltspaceVR by Microsoft, vTime, VRChat, and
also Bigscreen, which was used for Proof of Concept (PoC)
in our research [18, 19, 20, 21, 22]. At the time of writing,
companies have also started exploring building the meta-
verse, a virtual universe.

Considering how lucrative social networks can be, along
with an anticipated uptick in social VR usage, an expected
race would be fought to establish the dominant market
foothold. Undoubtedly, this may pressure developers to
push products to market without extensive security testing
or a full understanding of the new technology. For this rea-
son, we may expect bugs or errors would be present in this
new medium. We posit that the connectivity and medium
of social VR applications drastically escalate the potential
for malware exploitation, especially with the establishment
of the metaverse. Malware authors often target social net-
works due to the high degree of user connectivity. This
facilitates its rapid spreading and has far-reaching effects
similar to infectious diseases in real life [23]. Although
created with no mal-intent, the Samy Worm, described in
Section 1, exemplifies the potential for social network mal-
ware to propagate swiftly. From a single user, the worm
spreads to over 1 million victims in about 24 hours [24].

VR social environments are no exception to this possi-
bility and offer a new and largely untested attack surface.
While traditional attacks might target intellectual prop-
erty or aim to disrupt a user or infrastructure, VR has
the potential to physically afflict the user. Furthermore, a
wealth of information is often provided by both the appli-
cation and the VR system’s own tracking, which can then
be leveraged against the victim.

In our work, we deliver novel VR attack concepts sup-
ported by a model realization. Our attacks are generaliz-
able since we target core technologies widely used in VR
systems. This is part of our VR security research and we
build on top of our previous results [25], [26], [27]. Parts
of the paper cover results of our research done in 2018 [28].
Our current work contributes the following:

• We are the first to implement the VR Man-in-the-
Room Attack. Two of the authors coined and pre-
dicted this attack in previous work [26].

• We offer the primary account for an implemented VR-
specific Worm & Botnet.

• We improve state of the art of automated vulnerability
detection & prevention, as we implement and publish
a series of analytical tools and vulnerability signatures
as free and open-source software (FOSS).

• We conduct a deep security analysis of a widely used
immersive VR social application and show by example
the severe impact of carried-out attacks on VR users.

• We impacted practice with responsible disclosure as
both the Bigscreen has patched their application, and
Unity Technologies documented our major discovered
vulnerabilities and exploits .

• We share our demonstrative attacking tools and ex-

ploits for research purposes as FOSS.
• We propose a new verification and validation dataset
for Javascript (JS) Static Application Security Testing
(SAST) focused on jQuery.

The remainder of the paper is organized as follows. Sec-
tion 1 provides an overview on related work and back-
ground information about VR systems and social network
worms. In Section 2, we present our novel attacks relevant
to VR applications. Section 4 describes our methodology,
apparatus, and scenarios followed by our security analy-
sis. Section 4.8 outlines our findings supported by a con-
crete realization of Man-in-the-Room (MitR) attack and
VR worm. Section 4.9 summarizes potential mitigation
and security suggestions. In addition, Section 5 documents
the way we improved the state-of-the-art of vulnerability
detection & prevention. Finally, Section 6 and Section 7
provide concluding remarks, discuss results, and explore
new research directions.

1. Related Work

1.1. Security & Privacy in VR

The security and privacy of VR technologies was inves-
tigated by [29]. The research exploited data from motion
sensors inside VR equipment to infer a user’s interaction
with a virtual keyboard and touchpad. Researchers fur-
ther investigated ways of interfering a user’s interaction
with input devices in VE based on stereo camera records
of a user’s body movement. Moreover, several immersive
VR attacks including ransomware which makes VR system
unusable have been previously created by authors of this
work [26]. Because users are immersed in the VE, these
attacks managed to disorient and potentially physically
hurt victims. It was possible to force movement of victims
in real space without their knowledge or consent (Human
Joystick Attack) [26]. Authors of this work also presented
forensically significant artifacts which can be used to re-
construct activities in a VE [25]. We have further shown
the ability to visually reconstruct a VE from memory ar-
tifacts such as devices, room setup, location, and a user’s
pose [27].

Security challenges of Mixed Reality (MR) applications
were highlighted by [30]. [31] identified and responsibly
disclosed several security vulnerabilities in a selection of
Augmented Reality (AR) frameworks. Some of these con-
cerns are shared with VR technologies. [32] inspected se-
curity risks related to displaying information in AR in
a scenario with malicious applications. In addition, [33]
designed an AR platform architecture to limit abilities of
individual applications based on a configured output pol-
icy. A review on security threats in MR was presented by
[34], while a survey of proposed protection mechanisms for
MR was done by [35]. Study by [36] proposed a generic
framework for MR applications. Work by [37] focused on
VR security and privacy perceptions by conducting inter-
views with VR users and developers, and by making a
survey of VR privacy policies.

2

With respect to the existing literature, our work is the
first to exploit security vulnerabilities of a widely used
VR social application, create a proof-of-concept VR botnet
and VR worm, and implement the first Man-in-the-Room
attack. It is also the first work to explore defenses against
such attacks.

1.2. Security Background

Security analysis and penetration testing methodologies
are detailed in The Open Source Security Testing Method-
ology Manual (OSSTMM) 3 [38]. SP 800-115 from Na-
tional Institute of Standards and Technology (NIST) fur-
ther outlines security testing techniques and sets of tools
useful for individual phases of a security assessment [39].
Various approaches to security and forensic analysis are
studied by [40, 41, 42]. Work by [43] also includes imple-
mentation of PoC malware. A widely used web applica-
tion penetration testing methodology and framework has
been published by Open Web Application Security Project
(OWASP) [44, 45].

In regard to network communication analysis, a Man-in-
the-Middle (MitM) attack is used to intercept and spoof
network traffic [46, 47, 48]. Security analysis can utilize
this technique to detect possible information leak and for
Reverse Engineering (RE) purposes. For example, authors
in [49] utilized network traffic analysis techniques of a pop-
ular mobile AR application. They applied RE to extracted
data, detected patterns, and inferred users’ locations.

RE techniques exploit the weak forms of obfuscation
and analysis protections that software applications typ-
ically utilize. This applies to both compiled and inter-
preted programming languages [50, 51, 52]. Authors in
[53, 54] present several approaches for code obfuscation.
Our work in [55] provides a survey of tools for RE of C#
& .NET and deobfuscation of JS which help to learn inner
logic of an application.

In addition to the use of the MitM attack, we also pro-
pose a worm whose characteristics are similar to Samy
Worm (SW). SW targeted MySpace pages where the pro-
tagonist purposefully infected his own profile. The MyS-
pace servers then delivered the payload to any requester
of the infected page which then infected the victim’s pro-
file [56]. While infected profiles serve to further propagate
the Worm, authors in [24] suggested that the centralized
distribution of the payload prevents network congestion as
caused by conventional Worms. Although this Worm was
limited to the exposure of infected users, it propagated at
an alarming rate. Unlike SW, our attack against the VR
application is not limited by a given Online Social Network
(OSN) topology.

The management of worm infections requires preventa-
tive measures. Authors in [57] proposed a client side de-
tection system which monitors Hypertext Transfer Proto-
col (HTTP) requests containing self-replicating payloads.
Other preventive measures suggest the deployment of de-
coy profiles within an OSN [58] or the use of a proxy to
monitor HTTP content propagation [59].

1.3. Bigscreen Application

Bigscreen is a VR platform for social activities. It is
intended not only for entertainment activities like playing
computer games, watching movies and just hanging out,
but also for professional productivity and remote collabo-
ration purposes (see Figure 1). Bigscreen is available for
Windows operating systems via Oculus Home, Steam, and
Microsoft Store.

Figure 1: Productivity use cases of the Bigscreen [22].

In Bigscreen’s VE, every user is represented by an
avatar, which copies moves of the user’s head and hands
in reality as illustrated in Figure 2. Users create and ac-
cess virtual rooms, control resources via HMD, and share
their computer screens, computer audio, and microphone
audio. Bigscreen supports messaging services among the
participants.

Figure 2: VR avatars interacting in a virtual room in Bigscreen. [22]

Every room has a unique Room ID in the form of 8 al-
phanumeric characters (e.g. room-9hckep83). A room can
exist as public, or private (invite-only). All public rooms
are available on the application’s main screen. Private
rooms can be joined using a confidential Room ID, and no
further authorization is required. Application’s Code of
Conduct stated the communication is Peer to Peer (P2P)
and traffic is encrypted.

2. Man-in-the-Room Attack & VR Worm

2.1. Concepts Definition

A paramount approach for building VR applications is
the principle of virtual rooms. They serve as a space for
interaction between users and with the VE. A private VR
room may contain confidential information and interac-
tions between users with a heightened privacy level than

3

ordinary chat or video call. Users are immersed into this
virtual world and are expected to lose awareness that they
are still using a computer program. Their interactions are
unrestrained. As the environment gets closer to what they
know from the real world, VR users assume that the phys-
ical world’s social and privacy rules apply. Thus, users
would not expect an invisible intruder (an invisible virtual
Peeping Tom) in their real living room, watching their
activities and every move. This intrusion can disturb peo-
ple’s privacy on a very personal level, compared to prior
security work that has focused on non-immersive, or tra-
ditional computing environments.

We defined the novel concept of MitR attack as follows.
Assume that legitimate users communicate in a private
virtual room. They can move in space, see actions of their
avatars, and hear their voices. The attacker would leverage
security vulnerabilities in the VR platform (or in the VE)
to gain unauthorized access to a private VR room. The
attacker would then manage to stealthily move around the
virtual room while being invisible to everyone else in it.
The concept of MitR means that the attacker is able to
hear and see everything happening inside otherwise private
VR rooms without victim’s knowledge or authorization.

The concept of a VR Worm we propose is based on com-
mon characteristics of computer worms, but with novel im-
plications for VEs. A VR worm infects users of VR who
become its hosts. It can then spread among users shar-
ing the same virtual room. This could lead to pandemic
situation inside virtual spaces. We illustrate why users
should be careful who they meet in VR. We outlined our
threat/adversary model in Section 3.

2.2. Formal Modeling

The conducted study is motivated by the following re-
search questions:

• Is a MitR attack possible/feasible in existing VR ap-
plications?

• Can malicious viruses/worms spread in VR like dis-
eases in real life?

• Can physical world attack techniques have new con-
sequences in VR?

The MitR attack along with the VR worm we propose
are novel concepts specific to security and privacy in VR
applications. In our work, we further identify general pre-
requisites as main building blocks for a successful realiza-
tion of these attacks. A successful outbreak of VR worms
and their botnets throughout any VR platform must meet
the following requirements:

• Vulnerable persistent environment in a victim’s
VR application to host malicious code of a worm,

• Functionality for duplication of a worm to in-
fect other vulnerable victims and spread through the
platform,

MITR

AR(aa, r)

V (aa, r) C(r)

CM(p)

K(p) RE(p)

HP (ui, p)

¬I(p) V (ui)

Figure 3: The generic model of MitR attack against any VR appli-
cation/platform defined as a proof tree, tree notation based on [60].
The detailed description is provided in Equation (1).

• Communication channel for Command & Control
(C&C) protocol to allow control and monitoring of
infected zombies in a botnet.

To perform a MitR attack in a VR application, the at-
tacker has the following goals:

• Access targeted room by exploiting vulnerabilities
in authentication & authorization mechanisms or by
obtaining credentials.

• Connect to multimedia protocol using RE tech-
niques.

• Hide presence from User Interface (UI) and VE by
exploiting lack of validation and verification in the
protocol and vulnerabilities in application’s UI.

When a VR application includes insecure code imple-
mented in other software, it inherits these security risks.
For example, in some cases, it could be possible to employ
knowledge of attacking techniques used against network-
enabled multimedia streaming applications relying on sig-
naling channels over the Secure WebSockets (WSS) proto-
col, amongst other things demonstrated in Section 4.

We further detail MitR, it’s goals, and requirements for-
mally in Figure 3 and associated Equation (1). The suc-
cessful realization of the attack against virtual room r of
targeted VR application/platform, using communication
& multimedia sharing protocol p, authentication & autho-
rization mechanism aa, and the information is presented
to users via UI component ui, can be specified as a for-
mula MITR(p, ui, aa, r). Therefore, when we ask whether
MitR attack is possible for a selected VR application t,
we are looking for model Mt and valuation v such that
Mt |= MITR[v] (Mt satisfies MITR with v). These for-
mal definitions are later utilized in Section 4.8.

4

MITR(p, ui, aa, r) = R(r) ∧ P (p)

∧AA(aa, r) ∧ UI(ui)

∧AR(aa, r)

∧ CM(p)

∧HP (ui, p)

MITR(p, ui, aa, r) = R(r) ∧ P (p)

∧AA(aa, r) ∧ UI(ui)

∧ (V (aa, r) ∨ C(r))

∧ (K(p) ∨RE(p))

∧ (¬I(p) ∧ V (ui))

(1)

where:
R(x) = x is a VR room instance
P (x) = x is communication & multimedia sharing

protocol of VR application/platform
AA(x, y) = x is authentication & authorization

mechanism for a room y
UI(x) = x is UI component of VR

application/platform
AR(x, y) = sub-goal to access room y with

authentication & authorization
mechanism x

CM(x) = sub-goal to connect multimedia with
protocol x

HP (x, y) = sub-goal to hide presence in room from UI
component x and from VE via y

V (x) = x is vulnerable
V (x, y) = x in combination with y is vulnerable
C(x) = possession of credentials for x
K(x) = details of x are publicly known
RE(x) = successful Reverse Engineering (RE) of x
I(x) = integrity checks for x are performed

correctly

3. Threat/Adversary Model

The underlying hypothesis of the proposed model is that
the attacker seeks to both expand adversary controlled re-
sources and harvest information from the target. Specifi-
cally, materials presented and conversations held while in
private rooms. The adversary does not require an environ-
ment or resources atypical of a normal user. The attack
is crafted such that the adversary does not require prior
knowledge of the target nor special network topology (Fig-
ure 4). For testing purposes, we include the assumption
that the target is also VR capable and has or will launch
the application.

4. Case Study – Attacking Bigscreen

We provide a case study that shows a concrete demon-
stration of our MitR attack and VR Worm carried out

BobAlice Trudy

Bigscreen servers

Mallory

Figure 4: Basic scenario for attacking the Bigscreen application. Al-
ice and Bob are legitimate users of the application, each in a different
location. Mallory is an attacker with maliciously patched Bigscreen
application (Figure 9). Trudy is an attacker with developed C&C
server capable of attacking Bigscreen users and controling created
botnet (Section 4.6). Mallory and Trudy aim at users of the appli-
cation and do not attack Bigscreen servers (Figure 6, Figure 10).

against the Bigscreen application. The analyzed technolo-
gies are widely employed in other VR applications and
platforms (e.g. Unity engine, C#, .NET, UI layer using JS
& jQuery, WebRTC, HTTP, WebSockets (WS), Transport
Layer Security (TLS)). It is possible to generalize evalua-
tion of the Bigscreen to VR systems broadly. Our security
analysis included methods of vulnerability research and
penetration testing, it can be categorized as: 1. Exter-
nal, 2. Black box, 3. Non-destructive, 4. Ethical, and 5. In
a controlled environment. The security analysis is broken
down into several phases, which could be mapped to cor-
responding stages defined by [39] with some adjustments.
The adjusted security phases we propose are characterized
as follows:

• Phase I – Reconnaissance Examine the Bigscreen
and gather publicly available information (detailed in
Section 4.2).

• Phase II – Laboratory Setup & Tool Sets Pre-
pare laboratory equipment and software tools based
on identified areas of interest (described in Sec-
tion 4.3).

• Phase III – Security Analysis Assess overall secu-
rity with network traffic analysis, penetration testing,
RE of used protocols and the Bigscreen desktop ap-
plication (presented in Section 4.4).

• Phase IV – Exploit Development With identified
security flaws, craft exploits to assess the impact of
vulnerabilities (highlighted in Section 4.5).

• Phase V – Tool Construction Aggregate discov-
ered attacks and exploits into a comprehensive attack-
ing tool (outlined in Section 4.6).

• Phase VI – Testing Evaluate the success rate ac-
cording to defined scenarios (Section 4.7). Summarize
our results (Section 4.8) and responsibly disclose find-
ings to vendors (Section 4.9).

5

4.1. Scenarios

We defined multiple scenarios for maintaining a system-
atic approach during analysis and testing. Scenarios refer
to actions of hypothetical legitimate users (Alice, Bob)
and attackers (Mallory, Trudy), as in Figure 4. Individ-
ual steps are available in supplemental materials as Ap-
pendix A. These scenarios cover the common functionali-
ties offered by the Bigscreen application: 1. Passive stay in
lobby, 2. Creation of a public room, 3. Creation of a private
room, 4. Conducting a private meeting, and 5. Transition-
ing between rooms.

4.2. Phase I – Reconnaissance

We focused on Open Source Intelligence (OSINT) that
could reveal inner parts of the Bigscreen system. We anal-
ysed job offers from the Bigscreen company and found out
how does application’s codebase look like.1 Furthermore,
Bigscreen’s blog contained information about the applica-
tion’s updates and posts about their development.2

Our previous forensic research [25] identified several ar-
tifacts left on the hard drive by the Bigscreen applica-
tion. We uncovered that the application’s UI elements
were controlled by JS (with jQuery) in a limited built-in
web browser and the UI had bindings to the application’s
core layer.

4.3. Phase II – Laboratory Setup & Tool Sets

The testing and analysis described in the study was car-
ried out in a controlled laboratory environment similar to
our previous work [25]. The tools and equipment useful for
the analysis are listed respectively in Table 1 and Table 2.
The network topology used for experimentation purposes
is depicted in Figure 5.

4.4. Phase III – Security Analysis

Most of the traffic generated by the Bigscreen applica-
tion was encrypted. This was circumvented using trans-
parent proxy via mitmproxy, where a temporary Certifi-
cate Authority (CA) was configured and trusted by the
VR workstations. This technique allowed us to decrypt
traffic protected by TLS.

We managed to RE and decompile the application and
Dynamic Link Libraries (DLLs) into corresponding logic
in C#, which revealed the inner structure of the applica-
tion. Figure 7 presents a diagram of the developed exploit
to download and execute malware on victim’s computer.
In fact, Bigscreen application consists of several layers and
communicates over network with its servers and peer users
in the room. Attacker sends payload to servers which dis-
tribute it to users. Payload arrives to UI layer where it
causes Cross-site Scripting (XSS) attack via unsafe jQuery
methods (Section 5.4). The attack propagates through

1https://bigscreenvr.com/careers/
2https://blog.bigscreenvr.com/

PC 1

Bigscreen serversInternet

PC 2

R 1

HTC Vive Oculus Rift

Figure 5: Initial Experimental Setup

bindings from UI to core layer. Application core then calls
method from Unity with malicious payload which causes
Remote Code Execution (RCE). Finally, attack escapes
from the application, downloads malware and executes it.

We found out that DLLs are loaded without integrity
checks. This made unauthorized patching of the Bigscreen
application possible (i.e. Application Crippling).

A) room-create

wss://signal2.bigscreenvr.com

Bob

https://signal2adm.bigscreenvr.com/

Trudy

B) room-join

room created

A.2) roomstate

B) user-joined

A.1) room-latest

Figure 6: The two identified paths of forged signaling messages in
an attack over the network. See Section 4.4 for details. Supplemen-
tal materials present example payloads in Appendix H and network
traffic analysis in Appendix C.

Application’s desktop UI was implemented as JS en-
vironment which communicates with C# core layer via
JS-C# function bindings. This UI layer also communicates
with Bigscreen’s servers using WSS. Extracted JS source
code was obfuscated and minified, but we managed to im-
plement a deobfuscator for this format (Section 5.5). Dur-
ing analysis of JS-C# bindings, we discovered a critical se-
curity vulnerability in the C# Unity scripting Application
Programming Interface (API). A method Application-

.OpenURL(url) is dangerously capable of running pro-
grams, opening folders and files on the host computer (see
Sections 5.1 and 5.2 and Listing 12 and 17 in supplemental

6

https://bigscreenvr.com/careers/
https://blog.bigscreenvr.com/

Table 1: Tools for Security Analysis

Purpose Software

network traffic
analysis

mitmproxy, wifimitm,
Scapy, Wireshark, Netfox
Detective, NetworkMiner,
tools from [39, A-1]

RE of C# and .NET
environment

de4dot, Reflexil, ILSpy,
dnSpy, JetBrains dotPeek,
Progress® Telerik® Just-
Decompile

RE and deobfuscation
of JS

JS Beautifier, JSNice,
Prettier, Packer (un-
packer) by Dean Edwards,
de4js, ESDeobfuscate,
JStillery, JSDetox, dCode
Javascript Unobfuscator,
JsArrayRefDeobfuscator
(jsard)

Table 2: Software Versions of Virtual Reality Applications and De-
vices
Application / Device Software Version

Bigscreen 0.34.0
Oculus App 1.36.0.215623
Steam 1549129917
SteamVR 1.2.10
Vive Headset MV HTC 1462663157
Vive Base HTC V2-XD/XE (x2) 436
Vive Controller MV HTC (x2) 1533720215
Rift Headset 709/b1ae4f61ae
Rift Sensor (x2) 178/e9c7e0406-

4ed1bd7a089
Rift Touch (x2) f3c65f7a5f

materials).

RE led to an understanding of the signaling protocol
which was used to manage VR rooms and establish multi-
media P2P channels. WSS channels were observed to use
encryption but were fundamentally flawed due to a lack of
authentication & authorization. We discovered it is pos-
sible to send a specially crafted message to the signaling
server which is forwarded to either the room’s participants
or the application’s lobby. At the network message level,
the attacker can set arbitrary values to some fields. The
application did not perform proper sanitization of data re-
ceived through encrypted signaling channel from the sig-
naling server. The application naively trusts its signaling
server, which can forward untrusted messages. The re-
ceived malicious payloads are propagated to the UI layer
resulting in remote XSS over signaling channel. Attacking
the lobby can affect all users of the Bigscreen application
worldwide.

Figure 6 presents the two paths we identified to forge

Table 3: Main Vulnerabilities of the Application

Vulnerability Context Severity

RCE via API call to
Application.OpenURL

Unity engine High

XSS in user name,
room name, room de-
scription, and room
category

UI layer High

Patching DLLs with-
out integrity check

DLLs High

Lack of integrity, re-
ceiving data without
sharing any VR state

WebRTC High

Lack of authentica-
tion, connection from
a custom application

Signaling channel High

Lack of authentica-
tion, connection from
a custom application

WebRTC Medium

Information leak via
RE of assemblies

Application core Medium

Information leak
via RE of obfuscated
and minified JS source
code

UI layer Low

signaling messages in an attack over the network. On
path A, the attacker creates a new public room with pay-
load in room name, room description, or room category
(room-create). Bob requests list of all public rooms which
causes XSS in his application (room-latest), this is ap-
plicable to all users in the lobby. Victim can also request
details about selected room which also delivers the XSS
payload (roomstate). On path B, the attacker sets pay-
load as username and joins Bob’s room (room-join). As
soon as the attacker joins the room, XSS is executed in
Bob’s application (user-joined).

Selected payloads of Bigscreen XSS attacks are available
in supplemental materials as Appendix H. Please see [55]
for a complete procedure, other discovered vulnerabilities,
and technical details.

4.5. Phase IV – Exploit Development

In order to know the severity of the identified issues,
we focused on ways how malicious hackers could possibly
abuse the Bigscreen application and put its users at risk.
The following highlights significant achievements while the
full set of exploits and technical details are available in [55].

• Eavesdropping victim’s screen and micro-
phone: Forged signaling message can override vic-
tim’s multimedia sharing over the network, as de-
picted in Figure 6. Our PoC WebRTC application
was able to covertly connect to legitimate Bigscreen
applications without the user’s knowledge.

7

DLL

UI layer (JS)

Core layer (C#)

Operating System

Servers Peers

...

Attacker

1) Lack of authentication

2) UI XSS

3) JS⇄C# bindings

4) Unity RCE Unity

WebRTC

Figure 7: Diagram of developed exploit to download and execute
malware on Bigscreen victim’s computer. See Appendix H in sup-
plemental materials for example payloads.

• Discovery of private rooms: XSS payload in
a spoofed signaling message can force the victim to
leak the private room ID to the attacker’s C&C server.

• Download & execute malware on victim’s com-
puter: Security flaw in Unity scripting API can be
exploited to remotely run programs, open folders and
files. The attack downloads and executes malware, as
illustrated in Figure 7.

• Botnet and VR worm spreading through the
whole Bigscreen community: Combination of sev-
eral discovered vulnerabilities allowed realization of
VR worm, implementation is described in Section 4.8.

• Man-in-the-Room attack: A new cyber attack re-
lated to VEs has been successfully realized during this
research (see details in Section 4.8).

Zombie
control

Monitoring

Room
control

Room chat Room participant

Public rooms Private rooms Zombies

Figure 8: Visualization of the main parts of the C&C tool. Zom-
bie control and Room control can be opened and closed for each
controlled zombie and room. Each room can have multiple Room
participants.

4.6. Phase V – Tool Construction

To understandably demonstrate our findings to the sci-
entific community, we designed and implemented a user
friendly attacking tool. It can execute individual attacks

and serve as C&C (bot herder), controlling the entire bot-
net of infected Bigscreen applications. It also includes our
PoC VR worm. Malware infection can be done with a sin-
gle button.

The attacker can target any public or discovered pri-
vate room and take control over the Bigscreen applica-
tion. Dashboard can control multiple rooms at the same
time using their Room control. Figure 8 highlights our
C&C tool where Zombie control and Room control can be
opened and closed for each controlled zombie and room.
Chat messages are shown in Room chat panel. The at-
tacker can eavesdrop victim’s screen and microphone using
Room participant panel. The tool monitors zombies and
each of them can be controlled with corresponding Zombie
control. We have developed our custom C&C protocol to
control zombies from the C&C server.

To demonstrate possible malware outbreak, we devel-
oped a demonstrative malware, which does not cause any
harm to an infected testing computer. It is used only to
demonstrate that discovered attack could download and
execute malware.

Implemented demonstrative attacking tool, including
the dashboard, C&C server, C&C relay server, and pay-
loads to execute all exploits (Section 4.5) is available online
for research purposes.3.

4.7. Phase VI – Testing

Testing was carried out according to defined scenarios
(Section 4.1). Note that experiments were carried out in
a controlled laboratory environment. Attacks were lim-
ited to users and VR rooms created in our laboratory, as
described in scenarios. Goals of the testing were mainly to:

• Describe critical impact of discovered vulnerabilities
in real-world situations (scenarios).

• Validate success rate of individual attacks/exploits.
• Validate correct implementation of developed attacks
in our C&C server.

All tested attacks require no action from the vic-
tim (zero-click attacks). Individual detailed steps how
all test cases were evaluated are in supplemental materials
as Appendix B and summarized in Table 4.

Table 4: Test Results Based on Initial Scenarios
Scenario Test result

Passive stay in the lobby Attack successful
Created public room Attack successful
Created private room Attack successful
Private meeting Attack successful
Transition between rooms Attack successful

3https://github.com/unhcfreg/VR-MitR-C2-Bigscreen

8

https://github.com/unhcfreg/VR-MitR-C2-Bigscreen

4.8. Major Findings

We conducted a security and forensic analysis including
methods of traffic analysis, vulnerability research, pene-
tration testing, and RE of the application and its network
protocols. In this section, we summarized the main dis-
covered vulnerabilities of the Bigscreen application (see
Table 3). Opportunities in discovered vulnerabilities were
then seized to create practical exploits highlighted in Ta-
ble 6. Advanced attacks require chaining multiple exploits
(Table 5). Details are available in [55].

We now explain how requirements of general attack con-
cepts (Section 2.2) were fulfilled in the case of Bigscreen.
We were able to use well-known techniques (e.g. XSS) for
individual small steps. However, when chained together,
they enabled these novel attacks with new and critical im-
plications for VR users.

Table 5: Exploits Based on Combination of Vulnerabilities

Attack UI
XSS

Unity
RCE

Patch Severity

Man-in-the-Room. ✓ × ✓ High
VR Worm. ✓ × × High
Download & run mal-
ware.

✓ ✓ × High

Table 6: Selection of Exploits Based on Forged Signaling Messages
with XSS Payloads

Category Attack/Exploit Severity

Botnet Control infected applica-
tions from C&C server.

High

VR Worm Spread a worm infec-
tion through the whole
Bigscreen community.

High

JS RCE Remotely execute any JS
code in the UI layer of
Bigscreen.

High

Privacy
violation

Discover private rooms. High

Privacy
violation

Eavesdrop screen and mi-
crophone.

High

Privacy
violation

Persistently eavesdrop vic-
tim’s chat, even if they go
to another room.

High

Impersonation Spoof chat messages. Medium
Privilege
escalation

Set selected user as room
admin.

Medium

DoS Ban selected victim until
restart.

Low

Listing 1: Minimal and simplified example of self-replicating XSS
payload in variable NAME which can be used for the VR worm.

function worm(){
/* payload here */ ;

NAME=’<sc’+’ript>’+worm . toS t r i ng ()+
’;worm();</sc’+’ript>John’ ;

} ;
worm () ;

Requirements for a successful outbreak of VR worms
and their botnets in Bigscreen were fulfilled as follows:

✓ Vulnerable persistent environment: Modifica-
tions by XSS attack can persist until application reset.
Victims can, therefore, propagate the payload further.

✓ Functionality for duplication of a worm: An at-
tacker can modify the victim’s name to also include
an XSS payload, resulting in any future contact with
other users to disseminate the payload and also mod-
ify their username, further circulating the attack (Fig-
ure 10). The principle of the worm is illustrated in
Listing 1.

✓ Communication channel: When the victim gets
infected by the worm, it becomes a zombie, reports to
our C&C Server via WS established in context of UI
layer (JS), and awaits commands. With this exploit,
it is possible to create a botnet of computers of the
whole Bigscreen community and control them from
the attacker’s C&C Server.

Core layer (C#)

DLL

UI layer (JS)

Operating System

Servers

...Unity DLL

UI layer (JS)

Core layer (C#)

Operating System

... Unity

WebRTC

send

receive

receive

send

×

BobMallory

XSS

Figure 9: The attacker Mallory uses patched (application crippling)
version of the application which does not send VR state to other room
participants and which also uses forged signaling messages with XSS
payloads to hide traces of Mallory’s presence in the room.

The MitR attack goals associated with the Bigscreen
case study were achieved as follows:

✓ Access targeted room: Remote XSS through sig-
naling channel leaked confidential Room IDs of pri-
vate rooms. Credentials for public rooms were pub-
licly available.

✓ Connect to multimedia protocol: We patched
some DLLs loaded by Bigscreen application (no in-
tegrity checking, Table 3) to change selected behavior.
Our PoC patched Bigscreen application could connect
with legitimate Bigscreen applications. This also gave
us complete control over one end of audio/video/data
streams (Figure 9).

9

Attacker BobAliceAlice's room Bob's room

VR worm
join

create & join create & join

leave
leave

join
VR worm

infected

VR worm

VR worm

infected

Figure 10: Sequence diagram of of initial VR worm infection (in
Alice’s room) and propagation from one user to another when they
meet in VR room (in Bob’s room).

✓ Hide presence: XSS payloads altered victim’s UI.
Combination of vulnerabilities (Figure 9, Table 5) al-
lowed to bypass sharing of attacker’s VR state. Vic-
tim had no data to render – the attacker was invisi-
ble in VE. The attacker could see victims in VR, see
screens of their computers, hear their audio/micro-
phone (Figure 11).

We can now utilize formal definition from Section 2.2 to
specify how MitR attack was successful in Bigscreen appli-
cation. FormulaMITR(p, ui, aa, r) represents a successful
attack. For model MBigscreen, we consider predicate sym-
bols from Equation (1) defined as follows, then we define
valuations v1 and v2:

R = {(”any public room”),

(”private room seen by infected user”),

(”unseen private room”)}
P = {(”proprietary over WebRTC & WSS”)}

AA = {(”public id knowledge”,

”any public room”),

(”confidential id knowledge”,

”private room seen by infected user”),

(”confidential id knowledge”,

”unseen private room”)}
UI = {(”limited JS”)}
V = {(”limited JS”)}
V = {(”confidential id knowledge”,

”private room seen by infected user”)}
C = {(”any public room”)}
K = {}

RE = {(”proprietary over WebRTC & WSS”)}
I = {}

(2)

v1 : p 7→ ”proprietary over WebRTC & WSS”

ui 7→ ”limited JS”

aa 7→ ”public id knowledge”

r 7→ ”any public room”

(3)

v2 : p 7→ ”proprietary over WebRTC & WSS”

ui 7→ ”limited JS”

aa 7→ ”confidential id knowledge”

r 7→ ”private room seen by infected user”

(4)

When we evaluate the formula with v1 and with v2,
we see that MBigscreen |= MITR[v1] and MBigscreen |=
MITR[v2]. Therefore, MitR attack is possible for
Bigscreen.

4.9. Mitigations & Suggestions

We provided related vendors with suggested mitigation
strategies. Both companies used these measures to remedy
the issues [61, 62, 63, 64]. However, our mitigation strat-
egy may be applicable to other VR vendors to improve
their security posture. Responsible disclosure letters are
in Appendix K and Appendix L in supplemental materials.

In the case of the Bigscreen application, discovered
weaknesses were caused by shortcomings & vulnerabilities
in authentication, authorization, encryption, data saniti-
zation, integrity checking, or by a critical security vul-
nerability in the integrated 3rd party software (Unity en-
gine). Individual flaws with smaller impact were chained
together resulting in attacks with critical impact. As for
the Unity Scripting API, discovered security vulnerabil-
ity was based on unrestricted, undocumented, dangerously
powerful, and unintended behavior of API method.

Furthermore, developers can detect and prevent such
vulnerabilities even in any other software by adopting our
FOSS tools (Section 5). For more details about specific
mitigations and suggestions, please see Appendix I in en-
closed supplemental materials.

5. Improving the State-of-the-Art of VR Vulnera-
bility Detection & Prevention

We implemented a series of analytical tools and vulner-
ability signatures (Table 7). We opted to publish them as
FOSS to improve to the state-of-the-art of vulnerability
detection & prevention in VR. MitR attack exploits vul-
nerabilities that could have been prevented. Developers
and scientists can now use our tools to make secure VR
software.

5https://youtu.be/N_Z3mfzLZME

10

https://youtu.be/N_Z3mfzLZME

Figure 11: Our novel Man-in-the-Room attack. Figure on the left shows the view of the user Bob, figure on the right shows attacker Mallory
who is invisible while in the room with Bob. The attacker uses malicious version of the application, as shown in Figure 9. Details are available
in our video demonstration5.

Table 7: Overview of our FOSS contribution to state of the art of
automated vulnerability detection & prevention.

Project Goal

CodeQL Signa-
ture for Unity
OpenURL Vul-
nerability

Detect OpenURL RCE vulnerability
in any other software built with
Unity engine.

Unity OpenURL
Exploit Demo

Raise VR developers’ awareness
about OpenURL RCE vulnerability.

jQuery XSS
Static Analyzer

Detect XSS in UI layer or in any
other web applications.

Dataset of Un-
safe jQuery
Method Calls

Evaluate our XSS analyzer and
compare it with ESLint.

JavaScript Array
Ref Deobfusca-
tor

Revert Array Ref obfuscation for-
mat of JS.

SlimIt Library
Fork

Improve JS parsing features for
(not only) our XSS analyzer and de-
obfuscator.

5.1. CodeQL Signature for Unity OpenURL Vulnerability

CodeQL allows for powerful Static Application Secu-
rity Testing (SAST) including taint analysis and data flow
analysis. For example, GitHub is using it for batch scan-
ning for vulnerabilities. We defined a CodeQL query and
a build configuration which can detect vulnerabilities in
Unity’s OpenURL method. This is the vulnerability that
we discovered and responsibly disclosed, see Appendix K
and Appendix L in supplemental materials. The vulnera-
bility signature is publicly available at the repository6.

However, CodeQL database creation is currently avail-
able only as a per-request service on LGTM7. In the case
of C# projects, CodeQL supports Microsoft Visual Studio
builds with msbuild, while Unity-based projects can be
compiled with Unity’s own build system. Unfortunately,

6https://github.com/mvondracek/Unity-OpenURL-Exploit-

Demo/tree/main/CodeQL
7https://lgtm.com/

CodeQL and LGTM lack direct support for projects based
on Unity build system and buildless parser does not have
UnityEngine API available. To leverage the power of Cod-
eQL and achieve successful build by LGTM, we decided to
use API placeholders for UnityEngine namespace, as the
application compiled by LGTM is intended only for Cod-
eQL analysis. This way, Unity-based projects can be built
in LGTM to extract information for CodeQL queries.

5.2. Unity OpenURL Exploit Demo

We implemented an example vulnerable Unity appli-
cation to fully demonstrate all the possible cases how
OpenURL can be exploited. Our aim is to raise develop-
ers’ awareness about this vulnerability. The demo exploit
application is available from its repository8.

Example of exploiting openLink function in-
side Bigscreen’s JS UI, which subsequently calls
Application.OpenURL method from Unity engine is
available in supplemental materials as Listing 12 and 17.

5.3. Dataset of Unsafe jQuery Method Calls

To evaluate our analyzer (Section 5.4) and to compare
it with other tools, we created a dataset9. It consists of
nearly 400 different samples of code and focuses on unsafe
jQuery method calls. The dataset was created as a combi-
nation of static code samples and samples generated from
templates created for each analyzed method. “By design,
any jQuery constructor or method that accepts an HTML
string – jQuery(), .append(), .after(), etc. – can po-
tentially execute code. This can occur by injection of script
tags or use of HTML attributes that execute code.” ([65])
Samples are organized into two groups:

1. Context Awareness,
2. Taint & Data Flow Analysis.

8https://github.com/mvondracek/Unity-OpenURL-Exploit-

Demo
9https://github.com/mvondracek/jQuery-XSS/tree/master/

dataset

11

https://github.com/mvondracek/Unity-OpenURL-Exploit-Demo/tree/main/CodeQL
https://github.com/mvondracek/Unity-OpenURL-Exploit-Demo/tree/main/CodeQL
https://lgtm.com/
https://github.com/mvondracek/Unity-OpenURL-Exploit-Demo
https://github.com/mvondracek/Unity-OpenURL-Exploit-Demo
https://github.com/mvondracek/jQuery-XSS/tree/master/dataset
https://github.com/mvondracek/jQuery-XSS/tree/master/dataset

The first group of samples includes code with vari-
ous contexts, therefore trivial tools without context-aware
parsers are eliminated from comparison. The second group
includes code where the ability to perform taint analy-
sis and data flow analysis is required. This means the
tool should determine how malicious data are sanitized
on paths from sources to vulnerable sinks. It should also
describe how malicious data are propagated through ex-
pressions across these sources and sinks .

5.4. jQuery XSS Static Analyzer

The XSS in Bigscreen’s UI layer was caused by unsafe
Hypertext Markup Language (HTML) manipulation with
jQuery methods (Section 4.4). HTML should be manipu-
lated in a safe way using alternative approaches to avoid
such software development weaknesses.

To prevent such vulnerabilities, we implemented a static
analyzer for JS which can detect use of unsafe jQuery
methods which are vulnerable to XSS attack. This an-
alyzer is available as a Command-line Interface (CLI)
program, but also as a plugin for Coala static analysis
system10. Plugins for Coala are called bears11 and this
jQuery XSS Static Analyzer is released as JSjQueryXs-
sUnsafeBear. For example, it can be used as part of
SAST stage of Continuous Integration (CI) by developers
to make their software safer. The analyzer is a FOSS and
available from its repository12. Its algorithm is presented
in Figure 12.

To evaluate our tool, we use the above-described dataset
(Section 5.3). We also use this dataset to compare our tool
with ESLint13 and also ESLint with jquery-unsafe plu-
gin14. The results we obtained from the evaluation of the
involved tools are illustrated in Table 8, Table 9, and Ta-
ble 10.

Table 8: Confusion matrix for evaluation of eslint tool with the
dataset.

Context Awareness Taint & Data Flow
P N P N

eslint
P 0 0 0 0
N 72 291 19.83% 12 12 50%

0% 0% 0% 0%

We can see that ESLint lacks the ability to detect jQuery
unsafe calls (Table 8). ESLint with a plugin cannot per-
form taint analysis or data flow analysis (Table 9). It
failed in all cases when data flow analysis was required to
detect jQuerry access through several variables. In cases
where taint analysis was required, because unsafe method
was called with safe/sanitized value, it scored some true
negatives. However, these true negatives are caused by

10https://coala.io/
11https://github.com/coala/coala-bears
12https://github.com/mvondracek/jQuery-XSS
13https://eslint.org/
14https://github.com/cdd/eslint-plugin-jquery-unsafe

Table 9: Confusion matrix for evaluation of eslint tool with jquery-
unsafe plugin with the dataset.

Context Awareness
P N

eslint
+ jquery-unsafe

P 21 7 75.00%
N 51 284 15.22%

29.17% 2.41%

Taint & Data Flow
P N

eslint
+ jquery-unsafe

P 0 7 0%
N 12 5 70.50%

0% 58%

Table 10: Confusion matrix for evaluation of our jQuery XSS Static
Analyzer with the dataset.

Context Awareness Taint & Data Flow
P N P N

jqxss
P 72 0 100% 0 12 0%
N 0 291 0% 12 0 100%

100% 0% 0% 100%

the fact, that the tool does not know all unsafe methods.
When an unsafe method unknown to it was tested, the
code was marked as safe not because of understood sani-
tization, but because the tool thinks the tested method is
safe. The tool has many false negatives as it cannot rec-
ognize more complex ways of calling unsafe methods, but
also because its internal list of unsafe methods is incom-
plete. On the other hand, we can see some false positives
(Table 9), where it incorrectly detected method calls not
related to jQuery.

Our analyzer utilizes power of a context-aware parser
and detailed knowledge of unsafe jQuery methods (Fig-
ure 12). This way we managed to eliminate false positives
and false negatives in the context-aware part of the dataset
(Table 10). On the other hand, our tool does not aim to
perform taint or data flow analysis. We decided that these
techniques were out of scope during the implementation.
Obviously, this sets some limitations for our tool. As we
can see, it failed in taint & data flow section of the dataset
because it does not implement the required techniques.
The obtained results show ESLint with a plugin performs
better than our tool (Table 9). In fact ESLint with a plu-
gin is not aware of all unsafe methods, therefore it flags
unknown ones as safe.

Our tool reaches 100% True Positive Rate (TPR),
0% False Positive Rate (FPR), 100% Positive Predictive
Value (PPV), 0% False Omission Rate (FOR), for part
of the dataset focused on context awareness (Figure 12).
The dataset, test scripts, and results of the evaluation are
publicly available15.

15https://github.com/mvondracek/jQuery-XSS/tree/master/

dataset

12

https://coala.io/
https://github.com/coala/coala-bears
https://github.com/mvondracek/jQuery-XSS
https://eslint.org/
https://github.com/cdd/eslint-plugin-jquery-unsafe
https://github.com/mvondracek/jQuery-XSS/tree/master/dataset
https://github.com/mvondracek/jQuery-XSS/tree/master/dataset

Require: source = Javascript source code
Ensure: detections = vulnerable jQuery method calls
1: vulnerable = static list of vulnerable methods
2: detections← []
3: tree← parse(source) /* abstract syntax tree */
4: for all node in tree do /* depth-first search (DFS) */
5: if node is a method call and node has arguments then

/* i.e. a possible setter method */
6: access← node.identifier
7: if access.node is a jQuery selector expression then

/* e.g. $("#selector") */
8: if (access is a dot access and access.identifier.value is

in vulnerable) then /* e.g. .html */
9: insert node into detections

/* e.g. $("#selector").html(...) */
10: else if (access is a bracket access and access.expr is in

vulnerable) then /* e.g. ["html"] */
11: insert node into detections

/* e.g. $("#selector")["html"](...) */
12: end if
13: end if
14: end if
15: end for
16: return detections

Figure 12: Algorithm of our analyzer to detect vulnerable jQuery
method calls in JS source code. Please note that conditions are
separated here for a better readability.

5.5. JavaScript Array Ref Deobfuscator

Our deobfuscator is a CLI program which can revert
Array Ref obfuscation format of JS. This format is char-
acteristic by global array in the beginning of the file con-
taining all values and method names used in the origi-
nal source code. Obfuscated code then uses references to
this global array instead of literals and methods. This
makes manual analysis of the code very time-consuming
as production code can easily contain thousands of items
in mentioned global obfuscation array. For example, UI
layer of Bigscreen was obfuscated in this format. We have
decided to share our deobfuscator with the professional
community, it is published as FOSS and available from its
repository16.

5.6. SlimIt Library Fork

The above mentioned deobfuscator and static analyzer
need to be able to correctly parse JS source code and
build corresponding Abstract Syntax Tree (AST). Use of
a context-aware parser is essential for both minimizing
false positives of static analysis, and delivering correct de-
obfuscation.

We decided to integrate the SlimIt library17. It pri-
marily offers a JS minifier, but also serves as a library
with a JS parser. Unfortunately, SlimIt parser was miss-
ing some features that our tools needed. So we decided to
create our fork18 and extend it with needed functionality.
Original library is available under MIT license, our fork is
also available under MIT license and we plan to suggest
merging updates from our fork to the main repository.

16https://github.com/mvondracek/JsArrayRefDeobfuscator
17https://slimit.readthedocs.io/en/latest/
18https://github.com/mvondracek/slimit

Table 11: Userbase
Software Reach
Bigscreen over 500,000 users19

Unity 3,000,000,000 devices20

6. Discussion & Conclusion

With respect to research questions, we proved with ex-
periments that MitR attack is possible in an existing VR
application and that VR Worm can spread between VR
users like disease in real life. We showed that with new
mediums, well-known attack techniques can evolve into
new attacks with a novel impact. Compared to conven-
tional applications, we posit that VR vulnerabilities are
more privacy invasive. New VR systems collect a plethora
of data such as a physical room structure, eye movements,
hand and body movements etc. The technology presents
new challenges that users, developers, and companies are
less experienced in, and for the users, it may be difficult
for them to imagine that virtual worlds also present a new
platform for spreading malware.

There aren’t many platforms in which users may be ed-
ucated about these new technologies. Most of the infor-
mation people see come from the companies selling VR
products, who naturally do not draw attention to poten-
tial privacy and security risks. In addition, the products
they bring to market are often released while still under
development. We reacted to this by bringing our research
to public attention in global media [55, p. 83]. We man-
aged to publish the results together with explanation and
recommendations for common users and the scientific and
professional communities at large. Our hope is that it will
help raise awareness of VR, its strengths and also its as-
sociated dangers.

The Bigscreen company accepted all recommendations
we provided in the responsible disclosure (Appendix K
in supplemental materials) and implemented appropriate
security measures so that the described attacks may be
mitigated [61]. Furthermore, Unity Technologies company
addressed their issue by updating documentation of the
dangerous method, as we suggested. After our responsible
disclosure in 2018 (Appendix L in supplemental materi-
als), several warnings have been included, so developers
using the OpenURL method are now aware of its power and
are instructed how to utilize it safely [63, 64]. Later in
2019, Unity’s security team published a security warning
for developers about the issue we reported [62]. “However,
if the game developer does not properly sanitize what is
passed into Application.OpenURL, their player could be
at risk. [. . .] the victim’s machine will immediately run the
application at that link, potentially allowing an attacker
to take control of the victim’s system.” ([62])

19https://bigscreenvr.com/press/
20https://unity3d.com/public-relations

13

https://github.com/mvondracek/JsArrayRefDeobfuscator
https://slimit.readthedocs.io/en/latest/
https://github.com/mvondracek/slimit
https://bigscreenvr.com/press/
https://unity3d.com/public-relations

We helped detect and prevent vulnerabilities which were
discovered and exploited during this research (responsible
disclosure letters are in Appendix K and Appendix L in
supplemental materials). We released several analytical
and attacking tools, example exploits, evaluation dataset,
and vulnerability signatures so that scientific and profes-
sional communities ensure secure VR software develop-
ment. Our work has impacted practice, and a popular
VR application and development platform was improved
significantly. The broad userbase of affected software is
presented in Table 11.

We delivered a concept of novel VR attacks and we fur-
ther identified key requirements for their realization in any
VR application or platform. Our work also presented an
implemented primary account of the first Virtual Reality
Worm, Botnet, and Man-in-the-Room attacks.

7. Future Work

Our attacks were demonstrated on a single application.
Future work aims to explore the automation of our ap-
proach so that it expands to other existing and future VR
systems. The various analytic tools and vulnerability sig-
natures we published can be easily utilized by the scientific
and professional communities. Future work will also focus
on both legal and policy implications of our findings as VR
technology gains more momentum.

Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1748950. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation. The work was also supported by the Brno
University of Technology internal project “Application of
AI methods to cyber security and control systems” FIT-
S-20-6293.

References

[1] M. Larin, “Overview of current trends in the field of virtual
reality,” Common Information about the Journal A&SE, p. 15,
2021.

[2] M. Mekni, Automated generation of geometrically-precise and
semantically-informed virtual geographic environments popu-
lated with spatially-reasoning agents. Universal-Publishers,
2010.

[3] Y. Zhang, H. Liu, S.-C. Kang, and M. Al-Hussein, “Virtual
reality applications for the built environment: Research trends
and opportunities,” Automation in Construction, vol. 118, p.
103311, 2020.

[4] I. E. Sutherland, “A head-mounted three dimensional display,”
in Proceedings of the December 9-11, 1968, Fall Joint Computer
Conference, Part I, ser. AFIPS ’68 (Fall, part I). New York,
NY, USA: ACM, 1968, pp. 757–764. [Online]. Available:
http://doi.acm.org/10.1145/1476589.1476686

[5] J. Lanier, Dawn of the New Everything: Encounters with
Reality and Virtual Reality. Henry Holt and Company,
2017. [Online]. Available: https://books.google.cz/books?id=
8MCuDgAAQBAJ

[6] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko,
M. Oberman, and M. Teitel, “Reality built for two:
A virtual reality tool,” SIGGRAPH Comput. Graph.,
vol. 24, no. 2, p. 35–36, feb 1990. [Online]. Available:
https://doi.org/10.1145/91394.91409

[7] ——, “Reality built for two: A virtual reality tool,”
in Proceedings of the 1990 Symposium on Interactive 3D
Graphics, ser. I3D ’90. New York, NY, USA: Association
for Computing Machinery, 1990, p. 35–36. [Online]. Available:
https://doi.org/10.1145/91385.91409

[8] N. Sala, “Virtual reality, augmented reality, and mixed reality
in education: A brief overview,” Current and prospective appli-
cations of virtual reality in higher education, pp. 48–73, 2021.

[9] Oculus VR. (2015, May) First Look at the Rift, Shipping Q1
2016. Accessed: 2022-08-13. [Online]. Available: https://www.
oculus.com/blog/first-look-at-the-rift-shipping-q1-2016/

[10] T. Merel. The reality of VR/AR growth. Accessed: 2021-10-01.
[Online]. Available: https://techcrunch.com/2017/01/11/the-
reality-of-vrar-growth/

[11] Steam. Accessed: 2021-10-01. [Online]. Available: https:
//store.steampowered.com/

[12] D. Heaney. (2019, Jan.) Share of VR headsets on Steam
doubled in 2018. Upload VR. Accessed: 2021-05-19. [Online].
Available: https://uploadvr.com/vr-steam-grew-2018/

[13] B. Lang. (2021, Jan.) Monthly active VR headsets on Steam
pass 2 million milestone. Road to VR. Accessed: 2021-05-19.
[Online]. Available: https://www.roadtovr.com/steam-survey-
vr-monthly-active-user-2-million-milestone/

[14] D. Heaney. (2021, Feb.) More than 2% of Steam users now have
a VR headset. Upload VR. Accessed: 2021-05-19. [Online].
Available: https://uploadvr.com/steam-vr-users-2-percent/

[15] Steamworks Development. (2021, Jan.) 2020 year in review -
Steam news. Steam. Accessed: 2021-05-19. [Online]. Available:
https://store.steampowered.com/news/group/4145017/view/
2961646623386540826

[16] ——. (2022, Mar.) 2021 year in review - Steam
news. Steam. Accessed: 2022-08-08. [Online]. Available:
https://store.steampowered.com/news/group/4145017/view/
3133946090937137590

[17] J. Koetsier. (2018, Apr.) VR needs more social: 77% of virtual
reality users want more social engagement. Forbes. Accessed:
2021-05-19. [Online]. Available: https://www.forbes.com/
sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-
want-more-social-engagement-67-use-weekly-28-use-daily/

[18] Facebook Technologies, LLC. (2020, Oct.) Facebook Horizon -
virtual reality worlds and communities. Oculus. Accessed: 2021-
05-19. [Online]. Available: https://www.oculus.com/facebook-
horizon/

[19] Microsoft. AltspaceVR. Accessed: 2021-05-19. [Online].
Available: https://altvr.com/

[20] vTime Holdings Limited. vTime - reality reimagined. Accessed:
2021-05-19. [Online]. Available: https://vtime.net/

[21] VRChat Inc. VRChat. Accessed: 2021-05-19. [Online].
Available: https://hello.vrchat.com/

[22] Bigscreen, Inc. (2018, Oct.) Press kit. Bigscreen. Accessed:
2019-01-14. [Online]. Available: https://bigscreenvr.com/press/

[23] L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling,
G. O. Roberts, J. V. Ross, and M. C. Vernon, “Networks and
the epidemiology of infectious disease,” Interdisciplinary per-
spectives on infectious diseases, vol. 2011, 2011.

[24] M. R. Faghani and H. Saidi, “Social networks’ XSS worms,” in
2009 International Conference on Computational Science and
Engineering, vol. 4. IEEE, 2009, pp. 1137–1141.

[25] A. Yarramreddy, P. Gromkowski, and I. Baggili, “Forensic anal-
ysis of immersive virtual reality social applications: A pri-
mary account,” in 2018 IEEE Security and Privacy Workshops
(SPW). IEEE, 2018, pp. 186–196.

14

http://doi.acm.org/10.1145/1476589.1476686
https://books.google.cz/books?id=8MCuDgAAQBAJ
https://books.google.cz/books?id=8MCuDgAAQBAJ
https://doi.org/10.1145/91394.91409
https://doi.org/10.1145/91385.91409
https://www.oculus.com/blog/first-look-at-the-rift-shipping-q1-2016/
https://www.oculus.com/blog/first-look-at-the-rift-shipping-q1-2016/
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://store.steampowered.com/
https://store.steampowered.com/
https://uploadvr.com/vr-steam-grew-2018/
https://www.roadtovr.com/steam-survey-vr-monthly-active-user-2-million-milestone/
https://www.roadtovr.com/steam-survey-vr-monthly-active-user-2-million-milestone/
https://uploadvr.com/steam-vr-users-2-percent/
https://store.steampowered.com/news/group/4145017/view/2961646623386540826
https://store.steampowered.com/news/group/4145017/view/2961646623386540826
https://store.steampowered.com/news/group/4145017/view/3133946090937137590
https://store.steampowered.com/news/group/4145017/view/3133946090937137590
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.oculus.com/facebook-horizon/
https://www.oculus.com/facebook-horizon/
https://altvr.com/
https://vtime.net/
https://hello.vrchat.com/
https://bigscreenvr.com/press/

[26] P. Casey, I. Baggili, and A. Yarramreddy, “Immersive virtual
reality attacks and the human joystick,” IEEE Transactions on
Dependable and Secure Computing, pp. 1–1, 2019.

[27] P. Casey, R. Lindsay-Decusati, I. Baggili, and F. Breitinger,
“Inception: Virtual space in memory space in real space – mem-
ory forensics of immersive virtual reality with the HTC Vive,”
Digital Investigation, 7 2019.

[28] University of New Haven. (2019, Feb.) University of New
Haven Researchers Discover Critical Vulnerabilities in Popular
Virtual Reality Application. Accessed: 2022-03-20. [Online].
Available: https://www.newhaven.edu/news/releases/2019/
discover-vulnerabilities-virtual-reality-app.php

[29] Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu, “I know what
you enter on Gear VR,” in Proceedings of IEEE Conference
on Communications and Network Security (CNS), Washington,
D.C., USA, 6 2019.

[30] F. Roesner, T. Kohno, and D. Molnar, “Security and privacy
for augmented reality systems,” Commun. ACM, vol. 57, no. 4,
pp. 88–96, Apr. 2014.

[31] R. McPherson, S. Jana, and V. Shmatikov, “No escape from
reality: Security and privacy of augmented reality browsers,”
in Proceedings of the 24th International Conference on World
Wide Web. International World Wide Web Conferences Steer-
ing Committee, 2015, pp. 743–753.

[32] K. Lebeck, T. Kohno, and F. Roesner, “How to safely augment
reality: Challenges and directions,” in Proceedings of the 17th
International Workshop on Mobile Computing Systems and Ap-
plications, ser. HotMobile ’16. New York, NY, USA: ACM,
2016, pp. 45–50.

[33] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner, “Securing aug-
mented reality output,” in 2017 IEEE Symposium on Security
and Privacy (SP), May 2017, pp. 320–337.

[34] J. Happa, M. Glencross, and A. Steed, “Cyber security threats
and challenges in collaborative mixed-reality,” Frontiers in
ICT, vol. 6, 2019. [Online]. Available: https://www.frontiersin.
org/article/10.3389/fict.2019.00005

[35] J. A. De Guzman, K. Thilakarathna, and A. Seneviratne,
“Security and privacy approaches in mixed reality: A literature
survey,” ACM Comput. Surv., vol. 52, no. 6, oct 2019. [Online].
Available: https://doi.org/10.1145/3359626

[36] S. Rokhsaritalemi, A. Sadeghi-Niaraki, and S.-M. Choi, “A
review on mixed reality: Current trends, challenges and
prospects,” Applied Sciences, vol. 10, no. 2, 2020. [Online].
Available: https://www.mdpi.com/2076-3417/10/2/636

[37] D. Adams, A. Bah, C. Barwulor, N. Musaby, K. Pitkin,
and E. M. Redmiles, “Ethics emerging: the story of privacy
and security perceptions in virtual reality,” in Fourteenth
Symposium on Usable Privacy and Security (SOUPS 2018).
Baltimore, MD: USENIX Association, Aug. 2018, pp. 427–
442. [Online]. Available: https://www.usenix.org/conference/
soups2018/presentation/adams

[38] P. Herzog and M. Barceló, The Open Source Security Testing
Methodology Manual, 3rd ed., Institute for Security and Open
Methodologies (ISECOM), 12 2010, online. [Online]. Available:
http://www.isecom.org/mirror/OSSTMM.3.pdf

[39] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, SP 800-
115: Technical Guide to Information Security Testing and As-
sessment, National Institute of Standards and Technology, 9
2008.

[40] H. H. Alsaadi, M. Aldwairi, M. Al Taei, M. AlBuainain, and
M. AlKubaisi, “Penetration and security of openssh remote se-
cure shell service on raspberry pi 2,” in 2018 9th IFIP Interna-
tional Conference on New Technologies, Mobility and Security
(NTMS), 2 2018, pp. 1–5.

[41] G. Dorai, S. Houshmand, and I. Baggili, “I know what you
did last summer: Your smart home internet of things and your
iphone forensically ratting you out,” in Proceedings of the 13th
International Conference on Availability, Reliability and Secu-
rity, ser. ARES 2018. New York, NY, USA: ACM, 2018, pp.
49:1–49:10.

[42] X. Zhang, I. Baggili, and F. Breitinger, “Breaking into the

vault: Privacy, security and forensic analysis of android vault
applications,” Computers & Security, vol. 70, pp. 516 –
531, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167404817301529

[43] T. Haigh, F. Breitinger, and I. Baggili, “If i had a million cryp-
tos: Cryptowallet application analysis and a trojan proof-of-
concept,” in Digital Forensics and Cyber Crime, F. Breitinger
and I. Baggili, Eds. Cham: Springer International Publishing,
2019, pp. 45–65.

[44] M. Meucci, A. Muller et al., OWASP Testing Guide
4.0 - Release. The OWASP Foundation, 9 2014, on-
line. [Online]. Available: https://www.owasp.org/index.php/
OWASP Testing Project

[45] A. van der Stock, B. Glas, N. Smithline, and T. Gigler,
OWASP Top 10 – 2017, The OWASP Foundation, 2017, online.
[Online]. Available: https://www.owasp.org/index.php/top10

[46] M. Vondráček, J. Pluskal, and O. Ryšavý, “Automation of
MitM Attack on Wi-Fi Networks,” in Digital Forensics and
Cyber Crime, P. Matoušek and M. Schmiedecker, Eds. Cham:
Springer International Publishing, 2018, pp. 207–220.

[47] M. Vondráček, J. Pluskal, and O. Ryšavý, “Automated
Man-in-the-Middle Attack Against Wi-Fi Networks,” Journal
of Digital Forensics, Security and Law, vol. 13, no. 1, pp.
59–80, 2018. [Online]. Available: https://commons.erau.edu/
jdfsl/vol13/iss1/9

[48] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors,
“mitmproxy: A free and open source interactive HTTPS
proxy,” 2010–, [Version 4.0]. [Online]. Available: https:
//mitmproxy.org/

[49] G. Meyer-Lee, J. Shang, and J. Wu, “Location-leaking through
network traffic in mobile augmented reality applications,” in
2018 IEEE 37th International Performance Computing and
Communications Conference (IPCCC), 11 2018, pp. 1–8.

[50] S. D. Paola, “Advanced JS deobfuscation via AST and partial
evaluation (Google Talk wrapup),” Minded Security Blog, 10
2015, online. [Online]. Available: https://blog.mindedsecurity.
com/2015/10/advanced-js-deobfuscation-via-ast-and.html

[51] G. Heyes, “Executing non-alphanumeric javascript without
parenthesis,” PortSwigger Web Security Blog, PortSwig-
ger Ltd., 7 2016, online. [Online]. Available: https://
portswigger.net/blog/executing-non-alphanumeric-javascript-
without-parenthesis

[52] P. Palladino, “Brainfuck beware: Javascript is after you!” Blog
Patricio Palladino, 8 2012, online. [Online]. Available: http:
//patriciopalladino.com/blog/2012/08/09/non-alphanumeric-
javascript.html

[53] M. Mateas and N. Montfort, “A box, darkly: Obfuscation, weird
languages, and code aesthetics,” in Proceedings of the 6th Digi-
tal Arts and Culture Conference, IT University of Copenhagen,
2005, pp. 144–153.

[54] N. Montfort, “Obfuscated code,” Software Studies: A Lexicon,
pp. 193–199, 2008.

[55] M. Vondráček, “Security Analysis of Immersive Virtual Real-
ity and Its Implications,” Master’s thesis, Brno University of
Technology, Faculty of Information Technology, 2019.

[56] W. H. Securtiy, “Cross site scripting worms and viruses, the
impending threat and the best defense,” 2006.

[57] F. Sun, L. Xu, and Z. Su, “Client-side detection of xss worms by
monitoring payload propagation,” in European Symposium on
Research in Computer Security. Springer, 2009, pp. 539–554.

[58] W. Xu, F. Zhang, and S. Zhu, “Toward worm detection in online
social networks,” in Proceedings of the 26th Annual Computer
Security Applications Conference. ACM, 2010, pp. 11–20.

[59] V. B. Livshits and W. Cui, “Spectator: Detection and con-
tainment of javascript worms.” in USENIX Annual Technical
Conference, 2008, pp. 335–348.

[60] A. Kishimoto, M. Winands, M. Müller, and J.-T. Saito, “Game-
tree search using proof numbers: The first twenty years,” ICGA
journal, vol. 35, pp. 131–156, 09 2012.

[61] D. Shankar. (2019, Feb.) The bigscreen beta ”2019 update”
is now live! Bigscreen Blog. Accessed: 2022-08-13. [Online].

15

https://www.newhaven.edu/news/releases/2019/discover-vulnerabilities-virtual-reality-app.php
https://www.newhaven.edu/news/releases/2019/discover-vulnerabilities-virtual-reality-app.php
https://www.frontiersin.org/article/10.3389/fict.2019.00005
https://www.frontiersin.org/article/10.3389/fict.2019.00005
https://doi.org/10.1145/3359626
https://www.mdpi.com/2076-3417/10/2/636
https://www.usenix.org/conference/soups2018/presentation/adams
https://www.usenix.org/conference/soups2018/presentation/adams
http://www.isecom.org/mirror/OSSTMM.3.pdf
http://www.sciencedirect.com/science/article/pii/S0167404817301529
http://www.sciencedirect.com/science/article/pii/S0167404817301529
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/top10
https://commons.erau.edu/jdfsl/vol13/iss1/9
https://commons.erau.edu/jdfsl/vol13/iss1/9
https://mitmproxy.org/
https://mitmproxy.org/
https://blog.mindedsecurity.com/2015/10/advanced-js-deobfuscation-via-ast-and.html
https://blog.mindedsecurity.com/2015/10/advanced-js-deobfuscation-via-ast-and.html
https://portswigger.net/blog/executing-non-alphanumeric-javascript-without-parenthesis
https://portswigger.net/blog/executing-non-alphanumeric-javascript-without-parenthesis
https://portswigger.net/blog/executing-non-alphanumeric-javascript-without-parenthesis
http://patriciopalladino.com/blog/2012/08/09/non-alphanumeric-javascript.html
http://patriciopalladino.com/blog/2012/08/09/non-alphanumeric-javascript.html
http://patriciopalladino.com/blog/2012/08/09/non-alphanumeric-javascript.html

Available: https://blog.bigscreenvr.com/the-bigscreen-beta-
2019-update-is-now-live-a68ab6ceb506

[62] B. Caldwell. (2019, Nov.) How to use URL handlers and
OpenURL safely in your Unity app. Unity Technologies.
Accessed: 2022-08-28. [Online]. Available: https://blog.unity.
com/technology/how-to-use-url-handlers-and-openurl-safely-
in-your-unity-app

[63] Unity Technologies. (2019, Apr.) Unity - Scripting API: Appli-
cation.OpenURL, v2018.3. Unity Technologies. Accessed: 2022-
08-13. [Online]. Available: https://docs.unity3d.com/2018.3/
Documentation/ScriptReference/Application.OpenURL.html

[64] ——. (2019, Aug.) Unity - Scripting API: Applica-
tion.OpenURL, v2019.1. Unity Technologies. Accessed: 2022-
08-13. [Online]. Available: https://docs.unity3d.com/2019.1/
Documentation/ScriptReference/Application.OpenURL.html

[65] OpenJS Foundation. jQuery API Documentation. Accessed:
2022-03-19. [Online]. Available: https://api.jquery.com/html/

16

https://blog.bigscreenvr.com/the-bigscreen-beta-2019-update-is-now-live-a68ab6ceb506
https://blog.bigscreenvr.com/the-bigscreen-beta-2019-update-is-now-live-a68ab6ceb506
https://blog.unity.com/technology/how-to-use-url-handlers-and-openurl-safely-in-your-unity-app
https://blog.unity.com/technology/how-to-use-url-handlers-and-openurl-safely-in-your-unity-app
https://blog.unity.com/technology/how-to-use-url-handlers-and-openurl-safely-in-your-unity-app
https://docs.unity3d.com/2018.3/Documentation/ScriptReference/Application.OpenURL.html
https://docs.unity3d.com/2018.3/Documentation/ScriptReference/Application.OpenURL.html
https://docs.unity3d.com/2019.1/Documentation/ScriptReference/Application.OpenURL.html
https://docs.unity3d.com/2019.1/Documentation/ScriptReference/Application.OpenURL.html
https://api.jquery.com/html/

	Related Work
	Security & Privacy in VR
	Security Background
	Bigscreen Application

	Man-in-the-Room Attack & VR Worm
	Concepts Definition
	Formal Modeling

	Threat/Adversary Model
	Case Study – Attacking Bigscreen
	Scenarios
	Phase I – Reconnaissance
	 Phase II – Laboratory Setup & Tool Sets
	Phase III – Security Analysis
	Phase IV – Exploit Development
	Phase V – Tool Construction
	Phase VI – Testing
	Major Findings
	Mitigations & Suggestions

	Improving the State-of-the-Art of VR Vulnerability Detection & Prevention
	CodeQL Signature for Unity OpenURL Vulnerability
	Unity OpenURL Exploit Demo
	Dataset of Unsafe jQuery Method Calls
	jQuery XSS Static Analyzer
	JavaScript Array Ref Deobfuscator
	SlimIt Library Fork

	Discussion & Conclusion
	Future Work

