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ABSTRACT

Our novel technique utilizes a Joint Energy-based Model
(JEM) that integrates both discriminative and generative ap-
proaches to increase resistance against dirty-label backdoor
attacks. Our approach is especially effective when the trig-
ger is short or hardly perceivable. We simulate the attack
on the Speech Commands Dataset consisting of 1 s audio
clips. During training, we use JEM to model a view of the
input implemented by a randomly selected 610 ms window.
During inference, we combine all (40) possible views uti-
lizing a generative part of JEM. The resulting system has
slightly decreased accuracy but significantly increased resis-
tance shown in multiple scenarios. Interestingly, replacing
JEM with a standard discriminative model (Disc) provides
increased resistance with a lesser effect compared to JEM
but maintains accuracy. We introduce an extension motivated
by semi-supervised training that further improves JEM but
not Disc. JEM can also benefit from Gaussian noise during
evaluation.

Index Terms— joint energy-based model, poisoning at-
tacks, speech commands classification, dirty label backdoor

1. INTRODUCTION
The need for collecting a huge amount of labeled data creates
an opportunity for attackers, who seek to alter the behavior of
machine learning systems. In data poisoning attacks, an at-
tacker manipulates a subset of collected data. Specifically, in
a dirty-label backdoor (DLBD) [1] attack scenario, attackers
aim to create a backdoor to the system by adding a trigger
to a subset of data points from a source-class, while simul-
taneously changing the corresponding ground-truth labels to
target-class labels. This can alter the behavior of the trained
system when it encounters test data containing the trigger [2],
which is especially dangerous if the target-class prediction
initiates a critical action of the system.

Some previous studies [3, 4, 5, 6] incorporated outlier de-
tection to filter out poisoned examples. In our scenario, we as-
sume that any data can potentially be poisoned. Therefore, we
don’t have access to clean data (a subset of data with a guar-
antee of not being poisoned) required by these techniques.

Nevertheless, poisoned data exhibits two significant irregular-
ities, the presence of the trigger and the mismatch between the
provided class label y and the input data x. Only techniques
focusing on the latter can be applied against barely noticeable
triggers. Using a trigger that is difficult for humans to per-
ceive is more harmful, as it decreases the likelihood of detec-
tion, potentially enabling repeated attacks. Large neural net-
work models can achieve nearly 100% accuracy on training
data, making even imperceptible triggers capable of changing
the behavior of an undefended system. Therefore, defenses
that increase effectiveness with decreasing trigger percepti-
bility show greater promise for future development.

Our research is framed in the DARPA GARD (Guaran-
teeing AI Robustness Against Deception) program1, which
provides a range of benchmark tasks, attacks, and baseline
defenses through the Armory toolkit2. Specifically, we focus
on the poisoning attacks on Speech Commands dataset [7].
There is limited research on defenses against dirty label poi-
soning attacks on speech systems. For instance, [8] presents
an attack against a speech recognition system, but no defense
is proposed. Another recent work [9] offers a defense against
clean label poisoning attacks on speaker verification systems,
where the attacker replaces some of the attacked speaker’s
audio files, but the labels stay intact. In contrast, our work
addresses dirty label poisoning attacks on speech command
classification systems.

Defenses against DLBD attacks have been more exten-
sively investigated within the domain of image classification.
Typical approaches are based on a filtering pipeline. It in-
volves training a neural network model on the poisoned
dataset and extracting representations of the data. Subse-
quently, techniques such as [10, 11, 12, 13] are used to
remove unusual (potentially poisoned) data points, and the
standard classifier is trained on the remaining data. One
non-filtering defense is a certified defense called randomized
smoothing [14], which involves adding random noise to train
and test examples in order to overwhelm the perturbation

1https://www.darpa.mil/program/
guaranteeing-ai-robustness-against-deception

2https://github.com/twosixlabs/armory

979-8-3503-0689-7/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 A
ut

om
at

ic
 S

pe
ec

h 
R

ec
og

ni
tio

n 
an

d 
U

nd
er

st
an

di
ng

 W
or

ks
ho

p 
(A

SR
U

) |
 9

79
-8

-3
50

3-
06

89
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

A
SR

U
57

96
4.

20
23

.1
03

89
69

7

Authorized licensed use limited to: Brno University of Technology. Downloaded on February 14,2024 at 12:43:22 UTC from IEEE Xplore.  Restrictions apply. 



that the attacker adds; however, it has limited effectiveness.
Another class of defenses is based on majority voting. For
example, Deep Partition Aggregation (DPA) [15] partitions
the poisoned dataset into multiple disjoint subsets, then trains
a classifier per subset, and the final decision is taken by ma-
jority voting of all the classifiers. Finite Aggregation [16]
improves DPA by using smaller disjoint subsets and combin-
ing the duplicates to train multiple classifiers. Other defenses
use differential privacy (DP) to ensure that the predictions by
classifier do not depend too much on individual data points
[17, 18, 19, 20].

Existing non-filtering approaches either focus on provable
rather than empirical performance or are specifically designed
for images and cannot be directly applied to speech. More-
over, the latter methods rely on specific data augmentation
that might harm the task in certain settings. Filtering ap-
proaches are effective in removing poisoned data, but even
a minor leak can be sufficient to establish a backdoor entry
into the system3. Moreover, implementing filtering methods
may not be feasible in specific scenarios. For instance, in con-
tinual learning [21, 22], data is gradually collected over time.
However, the filtering requires training a system on all avail-
able data first. This motivates us to propose a new method for
training a robust classifier against DLBD attacks and demon-
strating its effectiveness on a speech classification task. Our
standalone approach is versatile as it does not depend on any
specific architecture or training paradigm. As a result, it is
also well-suited to serve as the final step in a filtering pipeline
or as a potential replacement for a classifier employed in other
non-filtering methods. Our technique employs JEM which
modifies the training of a standard classifier to additionally
provide the score proportional to likelihood. We introduce a
novel way of determining the class membership during evalu-
ation which is distinct from the one optimized during training.
It is based on a proper probabilistic inference when JEM is
used, but we empirically show the usefulness even for a stan-
dard classifier. We additionally propose an extension of our
approach motivated by semi-supervised training and show its
effectiveness in more challenging scenarios. We also demon-
strate that during inference, augmenting the input with an ap-
propriate amount of Gaussian noise or modifying it in a direc-
tion that maximizes the likelihood provides an enhancement
to robustness.

2. GENERATIVE MODELING
2.1. Motivation
Discriminative models excel in classifying training data based
on provided labels by extracting relevant information from the
input. However, they are prone to relying on easily recogniz-
able features, which we illustrate by the analogy of classifying
paintings by authors. When the author’s signature is present

3https://github.com/twosixlabs/armory/blob/
master/docs/baseline_results/speech_commands_
poison_results.md

in the training data, the classifier may rely solely on it, result-
ing in reduced performance when the signature is later absent.
This issue is typically addressed by regularization techniques
that weaken the link to the signature by forcing the classifier
to consider only part of each painting or by augmenting each
painting during training. In this analogy, the clean data setup
corresponds to datasets of paintings with no signature. When
data is poisoned, some paintings are enriched with the sig-
nature (trigger) of different authors and are falsely labeled as
belonging to them. Poisoning an example can significantly
reduce the classification difficulty, as it only lies in extracting
the signature.

We argue that if the classifier additionally needs to recon-
struct the entire painting, the presence of the corresponding
author’s signature no longer simplifies the classification task.
Poisoning an example actually increases the difficulty of clas-
sifying and at the same time reconstructing this painting, as
the classifier is forced to take into consideration the entire
painting. The part of the poisoned painting that does not con-
tain the signature of a different author provides evidence sup-
porting the correct author ownership. For the classifier, this
evidence is interfering with its objective of classifying the
poisoned painting as belonging to a falsely provided author.
We believe that this effect should be magnified for hardly per-
ceivable triggers4.

Generative models describe the data distribution, which
implicitly requires paying attention to the whole input and we
perceive them as a proxy for the above-mentioned painting re-
construction. Specifically, we investigate Joint Energy-based
Model (JEM) [23] that modifies the training of a standard
classifier by directly embedding unscaled likelihood values
into the logits. The resulting model can function as a classi-
fier, with the embedded generative part ensuring that the en-
tire input is considered during the classification process. We
anticipate that this approach enhances natural defense against
DLBD attacks or unreliable labels, but the effectiveness of
this approach is subject to this work.

2.2. Joint Energy-Based Model
The standard classifier typically utilizes a neural network
(NN) fθ(x) : x 7→ q with parameters θ to map input exam-
ple x ∈ RDx to a vector of logits q ∈ RDy , where Dx is the
dimensionality of the input example and Dy corresponds to
the number of classes. Denoting qi as i-th index of q, poste-
rior distribution over labels y ∈ N+, y ≤ Dy is calculated as

pθ(y | x) = Softmax(q)y =
eqy∑Dy

i=1 e
qi

. (1)

JEM uses the same NN fθ(x) to model the joint distribution
of x and y via the energy Eθ(x, y) as

pθ(x, y) =
e−Eθ(x,y)

Zθ
=

efθ(x)y

Zθ
=

eqy

Zθ
. (2)

4Note that the case of asymptotically decreasing the strength of the trigger
up to zero corresponds to the common task of dealing with unreliable labels,
suggesting an additional utilization of the proposed technique.
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The intractable partition function Zθ =
∑

y

∫
x
e−Eθ(x,y)dx

ensures that the probability distribution is properly normal-
ized. Expressing the posterior distribution pθ(y | x) in JEM
factorizes Zθ out, resulting in the expression equivalent to the
standard classifier (Equation 1). This demonstrates that the
standard classifier and JEM differ only in the training pro-
cedure as both are represented by the same fθ(x). The out-
come of the JEM training procedure is that eqy becomes pro-
portional to pθ(x, y). However, in the case of the standard
classifier, there is no guarantee of any inherent relationship
between eqy and pθ(x, y).

2.3. JEM Training
The objective of JEM maximum likelihood training can be
factorized as log pθ(x, y) = log pθ(x) + log pθ(y | x). The
optimization of the last term corresponds to the training of
the standard classifier and log pθ(x) can be maximized by ap-
proximating the intractable expectation in

∇θ log pθ(x) = ∇θgθ(x)− Epθ(x̃) [∇θgθ(x̃)] (3)
via Stochastic Gradient Langevin Dynamics (SGLD) [24]
samples, where gθ(x) = log

∑
y exp fθ(x)y . Improper sam-

ples of SGLD can lead to training instabilities, but the use of
training modifications from [25] resolves this issue. Instead
of minimizing − log pθ(x, y), they also suggest minimizing
modified loss

L = − log pθ(y | x)− log pθ(x | y), (4)
which results in updates from Equation 3 to be replaced by
∇θ log pθ(x | y) = ∇θfθ(x)y − Epθ(x̃|y) [∇θfθ(x̃)y] . (5)

As suggested in [25], we occasionally replace class condi-
tional samples from pθ(x | y) with unconditional samples
from pθ(x), but only with a probability of 0.1. Per each mini-
batch of 64 examples, we generate 6 samples5 via iterative
SGLD procedure for 1 ≤ i ≤ Dx as

xt = xt−1 +
αt

2
∇xFθ(x

t−1) + ut, ut
i ∼ N (0, αt). (6)

To sample from pθ(x), we set Fθ(x) = gθ(x), whereas set-
ting Fθ(x) = fθ(x)y produces samples from pθ(x | y).

3. EXPERIMENTAL SETUP
3.1. Poisoned Speech Commands Dataset
We simulate dirty-label poisoning attacks on Speech Com-
mands Dataset [7]. This dataset consists of 1 s long au-
dio clips x belonging to 12 different keyword classes y ∈
{0, 1, .., 11}. Classes 0 to 9 are single-word commands6,
while class 10 represents silence and background noise, and
class 11 represents all other words. The last category con-
sists of 25 different short words. Classes 0 to 9 are roughly
equally distributed in the training set, but class 11 comprises
63.24 % of 85511 the training examples. In contrast, the test
set is nearly balanced, with each class accounting for 8.1 % to

5We maintain the default settings for the rest of the SGLD parameters.
6From 0 to 9: down, go, left, no, off, on, right, stop, up, yes.

8.7 % of 4890 test set utterances. It’s worth noting that class
11 is intended to be the source class for poisoning.

3.2. Threat model
The default trigger is a short audio of a clap sound placed at
the beginning of a certain portion of utterances x belonging
to the source class 11, whose label y is changed to target class
2. The trigger has comparable energy to x but it is scaled
by 0.1 before mixing it with the original audio. During the
evaluation, the same trigger employed in the training phase
is added to the source class test utterances, and the Accuracy
measured with respect to the correct labels along with Attack
Success Rate (ASR) is reported. ASR measures the propor-
tion of source class examples misclassified as the target class.

3.3. Model Descriptions
The baseline system (Base) is a ResNet50 [26] with 23.9 M
parameters trained to predict the class label given input spec-
trogram x. It is a Pytorch reimplementation of the DARPA
GARD TensorFlow baseline system provided in the armory
toolkit7.

We use the default JEM system from [23, 25], which
employs 28-layer deep, 10-k-wide WideResNet8 architecture
[27] with 36.6 M parameters with removed batch normaliza-
tion. We keep the same features x used by [25] for speech
applications, which are log-mel filter banks normalized over
the dataset.

4. PROPOSED METHOD
In Section 2.1, we argued that poisoning an example might
decrease the task difficulty when using the standard classi-
fier, but increase it for JEM. Our goal is not just increasing
the difficulty, but ideally building a classifier capable of out-
puting the correct class during evaluation when the trigger is
presented. To achieve that, we propose a technique to further
weaken the link between the trigger and the target class.

4.1. JEM Applied over Multiple Views (MVJ)
JEM provides access to unscaled likelihood pθ(x, y). Simi-
larly to pθ(x) =

∑
y pθ(x, y), we can introduce another vari-

able and marginalize it out by applying the sum rule, which is
a straightforward way for combination when using generative
models. Instead of directly modeling 1 s input utterance, we
propose to use multiple views τ of each input. Input views
could be in general obtained by any transformation9 of the in-
put signal. Our approach aims at the similarity between the
original input and the input corrupted by the trigger and we
expect that it can be better exploited in lower dimensional

7https://github.com/twosixlabs/armory/blob/
master/docs/scenarios.md

8Attempt to use WideResNet and its setup instead of ResNet50 as a base-
line architecture decreased the accuracy of about 2 % with negligible im-
provement in ASR, e.g. 100 % → 98 %.

9Active dropout, data augmentation, jitter, adding noise, stochastic de-
noiser, or considering only particular bandwidth to name a few.
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Fig. 1. Training and subsequent evaluation schema of the pro-
posed system. All utterances are 1 s long with corresponding
100 frames. Out of 61 consecutive frames, we compose one
view. During the training, mini-batches contain only one ran-
dom view per recording. Evaluation combines all 40 views.

spaces. For that reason, we implement view as a segment
of an input with a length10 of around 610 ms (61 consecutive
frames) instead of the full 1 s. This creates 40 distinct views
per input since the time shift between features is 10 ms. We
expect that having multiple views increases the difficulty of
trigger extraction and introduces the possibility of obtaining
some views entirely free of the trigger.

During training, per mini-batch, we randomly11 choose
only a single view of each utterance and minimize L (Equa-
tion 4). During inference, we treat the index of the view as
a random variable τ and interpret p(x, y) of the view τ as
pθ(x, y | τ). We set pθ(τ) to be a non-informative (uniform)
prior, which allows us to obtain the posterior by marginalizing
over τ as

pθ(y | x) = Softmax

(
log
∑
τ

exp fθ (x
τ )

)
y

, (7)

where xτ denotes the view of x with the index τ . The overall
training and evaluation schema of Multiple View JEM (MVJ)
is depicted in Figure 1. We train our model for 26 epochs
and since we have 40 different views, it is unlikely for the
same view to be chosen many times. We anticipate that in
the absence of the poisoned label, JEM would assign a high

10The length is a hyperparameter and could be set arbitrarily.
11We sample from a uniform distribution, but any distribution is allowed.

likelihood to the original class for all views of the poisoned
example. Due to the fact that we select only a single view per
mini-batch during training, we believe that JEM might still
assign a high likelihood to the original class for other views
of the poisoned example. For the success of this approach,
it is crucial that Equation 7 is not directly optimized during
training. The evaluation of multiple views at once generally
scales linearly with the number of views. However, the type
of views we employ incurs only minimal overhead (≈ 2×
slowdown) due to a large overlap of views and the utiliza-
tion of a specialized architecture that shares most computa-
tion across different views.

4.2. Discriminative Model and Multiple Views (MVD)
We demonstrated that the standard discriminative model
differs from JEM only in the type of training. Instead of
log pθ(x, y) = log pθ(y | x) + log pθ(x), or in our case,
instead of minimizing Equation 4, the classifier is trained to
maximize log pθ(y | x). Unlike for JEM, combining views
by applying Equation 7 has no mathematical foundation for
the standard classifier. However, the computation can be
performed and seen as an ad hoc logit combination. We use
the same protocol for training and evaluation as for MVJ, but
instead of training JEM, we train the standard discriminative
model. The resulting approach (MVD) can also be seen as
training a standard discriminator but treating it as JEM in the
context of our multiple views method. MVD takes 12 h to
train, 1⁄4 of MVJ training time.

4.3. Extention Inspired by Semi-Supervised Training
Denoting pd as empirical data distribution (with labels), pre-
viously trained JEM minimized Epd(x,y) [L], with L defined
in Equation 4. Unlabeled data can be incorporated into JEM
training [25] by minimizing Ex∼pd(x)

[∑
y pθ(y | x) L

]
for

such data. This encourages the model to assign a high value
of posterior distribution to a class of its own choice while pre-
venting posterior collapse. Our extension uses weight γ to
combine both losses and minimize them at the same time for
the data from the poisoned dataset. We expect that pθ(y | x)
will match the given label for clean data. Meanwhile, for poi-
soned data, pθ(y | x) should also assign a large value to the
true label, which then causes a large supervised loss value,
motivating JEM to intervene. The proposed extension aims at
increasing tolerance toward this kind of “error” by a relative
decrease in the loss value associated with this case.

The optimal solution of unlabeled loss is reached when
JEM assigs the same number of examples to each class, i.e.
when pθ(y) is uniform. To deal with class imbalance, we
add an additional term to the loss, such that the optimum is
reached when pθ(y) distributes as pd(y). This term is the
cross-entropy between pθ(y | x) and pd(y). This is equiva-
lent to setting L̃ = L− log pd(y) and minimizing

(1− γ)Epd(x,y) [L] + γ Epd(x)

[∑
y

pθ(y | x) L̃

]
. (8)
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Table 1. Accuracy and Attack Success Rate (ASR) at differ-
ent trigger scales on the default scenario – 10 % poisoning of
source-class 11, target class 2, clap at the beginning.

Clean Training Data and Trigger at Various Scales

Scale

Variant Base MVD MVJ Base MVD MVJ

↓ ASR [%] ↑ Accuracy [%]

clean - - - 94.6 95.1 91.9

0.02 100.0 11.3 0.3 86.5 94.1 89.5

0.1 99.8 27.5 1.0 86.9 92.2 90.8

0.5 100.0 87.0 69.9 86.9 87.5 85.5

We set γ = 0.1 at the beginning of the training and reach γ =
0.475 in the final epoch by the constant increase of 0.015 per
epoch. We also apply the same extension to MVD, for which
the losses in Equation 8 becomes L̃ = L = − log pθ(y | x).
We refer to this extension as SemiSup to distinguish it from
the previously introduced version Basic.

4.4. Extention – Augmentation during Evaluation
In our framework, data augmentation [28] could be incor-
porated during training to obtain multiple views. Instead,
we propose to use data augmentation only during evaluation,
specifically, we consider Gaussian noise and the SGLD step.
Each SGLD step is composed of two sub-steps, changing the
input x in the direction that increases the likelihood the most
and adding Gaussian noise. We expect that corrupting test
data by Gaussian noise weakens the trigger signal more than
the desired signal as long as the trigger scale remains small.
Moreover, we hope that a subsequent SGLD step12 (Equa-
tion 6) for Fθ(x) =

∑
τ fθ (x

τ ) denoted as SGLD will have
a further positive effect on ASR and possibly accuracy. In
our setup, we first apply Gaussian noise and/or SGLD step
and then construct views, i.e. there is one Gaussian noise and
SGLD step per recording rather than per view. The SGLD
step is obtained by summing contributions from all views.

5. EXPERIMENTS

5.1. Trigger Affecting Only a Subset of Views
We evaluate the default scenario described in Section 3.2 poi-
soning 10 % of the source class, which causes 64 % of all ex-
amples labeled as the target class to be poisoned. Evaluation
with a short trigger at the beginning of the utterance is suitable
to simulate a scenario where the trigger affects only a subset
of all input views, as almost 2⁄3 of views of each input do not
contain any trigger. In Table 1, we present the accuracy for
the system trained on clean data and the impact of varying the
default trigger scale of 0.1.

12Last SGLD step typically doesn’t add noise, i.e. it is equivalent to SGD.

Table 2. Accuracy and Attack Success Rate (ASR) for target
class 5 with 10 % poisoning of various source classes for 0.1
scaled clap trigger placed at the utterance beginning.

Target Class 5, Various Source Classes

Source

Variant Base MVD MVJ Base MVD MVJ

↓ ASR [%] ↑ Accuracy [%]

class 3 100.0 10.4 0.3 86.8 94.0 88.3

class 11 99.5 37.0 6.4 87.6 91.9 90.4

Since the source class 11 represents 8.3 % of the test set, it
is noteworthy that the Base system consistently maintains an
accuracy of approximately 95 % on the provided (poisoned)
labels. Interestingly, applying the combination proposed for
JEM (Equation 7) to a discriminative model (MVD) provides
high accuracy with increased natural resistance toward DLBD
attacks compared to Base, especially for low trigger scales.
The ability of MVJ to model pθ(x) hurts test accuracy across
all cases, but we also observe a significant decrease in ASR
compared to MVD when sufficiently small trigger scales are
evaluated.

We change the target class to 5, and we additionally use
a smaller source class (3). Poisoning 10 % of source class
3 corresponds to only 9 % of the total number of examples
from target class 5 to be poisoned. The results in Table 2
are consistent with the previous observations. Moreover, as
expected, reducing the number of poisoned examples leads to
improved performance. Since both MVD and MVJ systems
perform well when the trigger scale is low, they are capable
of ignoring incorrect labels, as this corresponds to the trigger
scale of 0.

5.2. More Challenging Triggers
We considered three additional triggers for our experiments:
the first trigger, the sound of a whistle (Whistle), is placed
close to the end of the utterance, but only about 1⁄5 of the views
do not contain the trigger. The second trigger (6 Claps)
consists of six consecutive claps and the third trigger con-
catenated a clap sound with a car horn sound (Clap+Horn).
The last two triggers affect the entire signal. Given the in-
creased difficulty of this setting and the fact that our approach
performs better with fewer poisoned cases and higher attenu-
ation of the trigger, we evaluated these triggers with a trigger
scale of 0.02 and a poisoning rate of 1 % on source class 11,
which results in 15 % of all examples from target class 2 be-
ing poisoned. The results are presented in Table 3. When the
trigger corrupts the entire signal, both MVJ and MVD still of-
fer benefits over Base. However, their effectiveness is reduced
compared to the previous cases.

5.3. Extensions
We test the extension SemiSup proposed in Section 4.3 on the
variant Clap+Horn reported in Table 3 and on the modified
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Table 3. Accuracy and Attack Success Rate (ASR) for target
class 2 poisoning source class 11 for various triggers.

Challenging Triggers, 1 % Poisoned, 0.02 Scale

Trigger

Variant Base MVD MVJ Base MVD MVJ

↓ ASR [%] ↑ Accuracy [%]

Whistle 88.2 78.7 4.4 86.5 88.3 88.5

6 Claps 94.9 82.6 49.3 87.8 87.9 85.4

Clap+Horn 96.6 81.1 46.6 85.7 88.0 86.5

default setup (scale 0.1 reported in Table 1). In the modified
setup, we place the trigger at random positions in the signal
rather than at the beginning (Random-Clap), which signif-
icantly reduces the performance of our approaches when the
extension is not applied (Basic).

For each variant in every setting, we choose two appropri-
ate Gaussian noise levels added to features, lower NoisLo
and higher NoisHi, and evaluate the trade-off between ac-
curacy and ASR. We use the architecture and features of
MVD/MVJ for Base when we add Gaussian noise. Addition-
ally, after the noise is inserted, we consider modifying the
utterance x by performing one SGLD step denoted as SGLD.
More details in Section 4.4.

Results in Table 4 indicate that SemiSup has a positive
effect on both accuracy and ASR of MVJ, but it does not
improve MVD. In addition, a suitable amount of noise can
significantly reduce ASR for MVJ with a reasonably small
decrease in accuracy, especially when combined with SGLD.
The same holds for Base and MVD but with a significantly
worse trade-off between the accuracy and ASR. The main
reason for reporting these results is to show the potential of
MVJ as we use an oracle to determine suitable noise levels
and SGLD step sizes αt. Choosing a proper strategy for se-
lecting these is out of the scope of this work.

6. CONCLUSION

We proposed a novel approach to train a system for speech
classification with increased robustness against dirty-label
backdoor poisoning attacks. Our method involves dividing 1 s
long input recordings into 40 overlapping 610 ms long views.
During training, we construct mini-batches by randomly se-
lecting one view per recording. During testing, we combine
all views. We use a Joint Energy-based Model (JEM) that
fuses a discriminative and generative model, and the view
combination is motivated by proper inference that leverages
the generative part of the MVJ system. Interestingly, apply-
ing the same inference to the standard discriminative system
MVD yields benefits in both accuracy and resistance against
the attack in all settings compared to the baseline system.
While MVJ provides the best resistance against poisoning

Table 4. Accuracy and Attack Success Rate (ASR) of lever-
aging a semi-supervised loss SemiSup, including lower
NoisLo and higher NoisHi noise levels during testing,
and performing 1 SGLD step SGLD for target class 2 and
source class 11 , tested with a clap at a random location
Random-Clap, and clap with horn Clap+Horn triggers.

Extensions, Random-Clap, 10 % Poisoned, 0.1 Scale

Extensions

Variant Base MVD MVJ Base MVD MVJ

↓ ASR [%] ↑ Accuracy [%]

Basic 97.3 78.4 58.1 86.6 88.1 85.1

+NoisLo 91.9 45.3 31.4 82.3 85.8 84.5
+NoisLo, SGLD - 51.5 28.2 - 87.4 86.6

+NoisHi 46.3 27.5 4.7 70.2 75.3 82.3
+NoisHi, SGLD - 29.7 3.2 - 79.7 85.3

SemiSup - 83.6 35.5 - 87.8 88.1

+NoisLo, SGLD - 69.6 9.1 - 87.4 88.2

+NoisHi, SGLD - 33.8 0.3 - 82.2 83.7
Extensions, Clap+Horn, 1 % Poisoned, 0.02 Scale

Basic 96.6 81.1 46.6 85.7 88.0 86.5

+NoisLo 67.9 29.9 14.2 82.0 89.1 88.5
+NoisLo, SGLD - 33.1 6.9 - 89.8 89.0

+NoisHi 43.4 16.2 1.0 72.7 82.9 85.8
+NoisHi, SGLD - 15.7 0.5 - 85.4 87.0

SemiSup - 82.1 38.5 - 87.6 88.3

+NoisLo, SGLD - 42.2 13.7 - 85.8 90.1

+NoisHi, SGLD - 40.0 1.5 - 82.7 88.3

attacks in all settings, its accuracy is slightly reduced. More-
over, we extended MVJ training inspired by semi-supervised
training. This variant further increases the accuracy and re-
sistance but does not improve the MVD system. Finally, we
demonstrated that adding a proper (obtained by an oracle)
amount of Gaussian noise and subsequent SGLD step of a
proper size during inference can significantly boost MVJ’s
resistance but it provides only a limited boost to the base-
line system and MVD. Overall, we provided ample evidence
that our incorporation of MVJ is effective against backdoor
attacks and we propose future research directions.
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