
Windower: Feature Extraction for Real-Time DDoS
Detection Using Machine Learning

Patrik Goldschmidt
Brno University of Technology, Brno, Czech Republic

Kempelen Institute of Intelligent Technologies, Bratislava, Slovakia
igoldschmidt@fit.vut.cz

Jan Kučera
Brno University of Technology, Brno, Czech Republic

CESNET a.l.e., Prague, Czech Republic
jan.kucera@cesnet.cz

Abstract—Distributed Denial of Service (DDoS) attacks are an
ever-increasing type of security incident on modern computer
networks. To tackle the issue, we propose Windower, a feature-
extraction method for real-time network-based intrusion (partic-
ularly DDoS) detection. Our stream data mining module employs
a sliding window principle to compute statistical information
directly from network packets. Furthermore, we summarize
several such windows and compute inter-window statistics to
increase detection reliability. Summarized statistics are then fed
into an ML-based attack discriminator. If an attack is recognized,
we drop the consequent attacking source’s traffic using simple
ACL rules. The experimental results evaluated on several datasets
indicate the ability to reliably detect an ongoing attack within the
first six seconds of its start and mitigate 99% of flood and 92% of
slow attacks while maintaining false positives below 1%. In con-
trast to state-of-the-art, our approach provides greater flexibility
by achieving high detection performance and low resources as
flow-based systems while offering prompt attack detection known
from packet-based solutions. Windower thus brings an appealing
trade-off between attack detection performance, detection delay,
and computing resources suitable for real-world deployments.

Index Terms—network intrusion detection, NIDS, DDoS miti-
gation, real-time, stream data mining, machine learning

I. INTRODUCTION

Distributed Denial of Service (DDoS) is one of the most
prevalent cyber-attacks on today’s Internet. It is described as
a deliberate attempt to render a target system unavailable,
threatening the key cybersecurity goal – availability. The attack
is typically performed via a large number of geographically
distributed computers known as a botnet. Such computers
simultaneously generate a huge amount of requests to over-
whelm a target system or its underlying network architecture.

DDoS usage has grown massively since the first attack [1]
reported in 1999. Cisco predicts 15.4 million DDoS attacks
in 2023 [2]. In Q1/2023, Cloudflare observed an increase in
hyper-volumetric attacks, peaking above 71 Mrps [3]. Volu-
metric attacks like DNS amplification, SYN flood, GRE flood,
and other TCP/UDP floods are the most popular [3], [4].

In general, defense against cyberattacks spans three high-
level objectives – prevention, detection, and reaction [5]. It
is well-known that perfect prevention cannot be achieved,
whereas the reaction implicitly assumes that the attack has
already happened [6]. In this light, attack detection is crucial
in successfully reacting toward harm minimization or attack
deflection (mitigation).

Attack detection is performed by Intrusion Detection Sys-
tems (IDSs), which monitor the activity of a protected system,
intending to identify its potential unauthorized use, misuse, or
abuse [7]. Identified malicious activities are collected centrally
and presented to a security officer. Afterward, either automated
or manual reaction can take place.

Most notable aspects of IDSs [8] include: I) Information
source, specifying whether network traffic (Network IDS –
NIDS) or end-host data are analyzed; II) Detection approach,
defining a detection principle – known signatures or deviations
from a norm; III) Detection time, putting constraints on the
detection delay; and IV) Response type, as whether the system
actively participates in attack mitigation after its detection.

We present Windower, a feature-extraction method for real-
time network-based intrusion (particularly DDoS) detection at
the network perimeter. It processes packet headers and utilizes
stream data mining and windowing techniques to extract
relevant traffic statistics. We designed Windower to detect
flooding attack and periodicity patterns, but it also proved
efficient against low-rate DoS. To demonstrate its capabilities,
we employed KitNet, an autoencoder ensemble from the
Kitsune [9] NIDS, as an anomaly-based attack discriminator
and simulated both detection and mitigation scenarios.

As most current machine learning (ML)-based NIDS re-
search implicitly assumes off-line scenarios [10], [11], we
specifically aimed to propose a practical and reliable method
for real-time attack detection and consequent mitigation. It
also allows stream learning, recommended for real-time cy-
bersecurity solutions [12]. The paper’s main contributions are:

• We propose a packet-based sliding window method1

to compute traffic statistics from packet headers using
stream data mining, suitable for real-time intrusion de-
tection and mitigation.

• We introduce a specific feature set particularly for volu-
metric DDoS but also prove its ability to detect low-rate
DoS attacks. Moreover, features are detector-independent,
allowing both misuse- and anomaly-based approaches.

• We demonstrate Windower’s performance in terms of
detection rate and latency on several public datasets
(CAIDA, CTU-13, SUEE-2017, UNSW-NB15) and com-
pare it to the state-of-the-art packet-based NIDS.

1Code publicly available at: https://github.com/xGoldy/Windower

https://github.com/xGoldy/Windower


This paper firstly looks at problems of flow-based NIDS for
real-time detection in Sec II. We further discuss related work
in Sec III and method design in Sec. IV. Experimental results
are presented in Sec. V, followed by rigorous discussion in
Sec. VI. Finally, Sec. VII concludes the paper.

II. FLOW-BASED DDOS DETECTION PITFALLS

The current mainstream way for ML-based DDoS detection
predominantly utilizes network flows. This fact is mainly
attributed to the wide availability of flow-based datasets, e.g.,
CIC-IDS2017 [13], CIC-DDoS2019 [14], and ISCX2012 [15],
currently considered the most popular for research [10]. Such
approaches typically achieve detection rates above 99% [10].
However, in addition to losing information about packet pay-
loads, flow-based detection suffers from two more defects:

1) Network flows provide no communication context.
2) Detection delays occur due to flow creation mechanism.
A network flow captures only a single data exchange

between a client and a server, providing no information context
about the client’s previous communication. Therefore, some
attacks using port randomization (e.g., tools HOIC or XOIC
incrementing source ports) or port scans create a separate flow
for each attack packet. The capabilities of flow-based methods
without flow correlation are thus significantly hampered.

Flow-based methods suffer from delays due to creation and
export intervals. Typically, a flow terminates after observing a
TCP FIN flag or when a timeout occurs. However, attacks like
SYN Flood do not carry FIN flags, so flows must be terminated
upon timeout. Moreover, observed flows are exported in bulks,
so dozens of seconds might pass until the flow data arrives at
a flow collector. Afterward, a NIDS still needs to access the
collector to retrieve the entries, adding additional delay.

Although the network flow collection is widely deployed
and well-matured, it was created with the aim of monitoring
and not directly for cyberthreat detection. Therefore, flow-
based attack detection might be unsuitable if a near-instant
reaction to the attack is required, as it can be significantly
delayed, and additional post-processing might be required.

As a possible solution, we propose a packet stream method
to compute statistics via a sliding window aggregated based
on the source IP. In such a way, it provides the client’s
communication context by design, thus avoiding the necessity
of flow correlation. Since no export must occur, the detection
delay is minimized to a few seconds after the attack begins.

III. RELATED WORK: REAL-TIME ML DDOS DETECTION

Real-time attack mitigation is the main design goal of prac-
tical anti-DDoS solutions [16]. Delays of dozens of seconds
or even minutes might thus be unacceptable. In general, there
are three main approaches to speed up the detection process:
1) Window aggregates, 2) Per-packet processing, 3) Subflows.

A. Window Aggregates

As the whole data stream cannot be processed at once,
windowing splits a (potentially infinite) data stream into logi-
cal subsets (windows). Applying operations separately to each

window allows for partial stream analysis. Thus, it enables to
detect and react upon events (e.g., attacks) in a timely manner.

Time-based windows are based on timestamps, whereas
count-based windows rely on the order of processed elements
(packets/flows) as they arrive from the network.

Vijazasarathy [17] detects DDoS using TCP flags and dura-
tions of count-based windows with the Naive Bayes classifier.
Similarly, Mousavi and St-Hilaire [18] proposed a DDoS
detection for SDN based on the entropy of destination IP ad-
dresses within five 50-packet windows and thresholding. Based
on Jensen-Shannon Divergence, Bhandari [19] differentiates
DDoS attacks and flash events within short 1-second windows.

Aggregates can also be created upon flows. For instance,
GEE [20] aggregates flows per source IP inside 3-minute win-
dows. Although such methods achieve relatively high accuracy,
timely attack detection is degraded due to NetFlow properties
(Sec. II) along with too long window lengths.

B. Per-Packet Processing

Per-packet NIDSs evaluate each packet within the attack
discriminator separately. Such systems utilize statistical tech-
niques like n-grams [21] or signatures (e.g., Snort [22]) to
search specific patterns within packets. Despite the signatures’
efficiency, the research has moved towards ML, especially Re-
current Neural Networks (RNNs), due to their ability to main-
tain context. DeepDefense [23] uses a bi-directional LSTM-
RNN with the last 100 packets, achieving ∼98% accuracy and
a 1-2% error rate. LSTM-BA [24] improved its performance
by combining an RNN with a Naive Bayes classifier.

Per-packet methods are sometimes combined with win-
dowing for additional context. Kitsune [9] uses per-packet
feature extraction and KitNET, an ensemble of autoencoders –
unsupervised artificial neural networks, for anomaly detection.
It keeps the communication context for channels (conversa-
tions between two hosts) using five damped time windows,
computing 115 features per packet. Chronos [25] employs
the same feature extraction as Kitsune, but their handling and
model architecture differ. Finally, Doshi et al. [26] combine
stateful window along with stateless packet-header features.

Although the discussed methods achieve promising results
and Kitsune sparked great interest within the community, they
still require evaluating every packet in the detection model.
Despite sufficient for smaller-scale local networks, the per-
packet approach might be infeasible for larger networks with
only a few dozen nanoseconds to process a packet available.

To enable DDoS detection and mitigation in high-speed
networks, we argue that one must classify at higher-level
abstraction, i.e., windows or network flow aggregates. As
outlined in Sec. II, flow-based methods might add additional
delay. Therefore, window-based methods seem to be a promis-
ing research direction for real-time detection purposes.

C. Subflows

A subflow is formed by the same 5-tuple (IPs, ports,
protocol) as a regular flow but is restricted by the number
of packets and/or its duration. Therefore, only the first n



Per-IP all windows statistics

Network packet stream

Feature
Extraction

IP A:

IP N:

Total packets: 14

Total packets: 42

Current window
per-IP data

Per-packet
features

Window 
finished?

Yes

Clean the
current window

Intra-Window
Statistics

Computation

Current
window data

tIP A: t-1 t-2

Current
intra-window

statistics

Inter-Window Statistics
Computation

Intra-window statistics for IPs
with enough windows

Yes

Transformation
standardization

Inter-windows
final statistics

Attack
Discriminator

IP acts as
attack / benign

Enough
windows?

tIP N: t-1 t-2

Fig. 1: Architecture of the proposed DDoS detection system.

packets of the flow are examined, or it is terminated after
a certain time. These approaches are plausible since they can
utilize existing NetFlow architecture while still speeding up the
detection. Nevertheless, the client’s communication context is
still missing, requiring additional post-processing (e.g., as in
the NeMo DDoS software [27]) for better performance.

AE-D3F NIDS [28] uses an autoencoder to detect DDoS via
features like packet/byte counts, packet sizes, and TTLs based
on 10-second bi-directional subflows. Similarly, Lucid [29]
aggregates packets within a subflow and performs detection
using a Convolutional Neural Network (CNN). Liang and
Znati [30] classify the whole flow based on its first N packets
via an LSTM model. These designs are less computationally
demanding than per-packet approaches but still might be
insufficient for real-time operation. Another drawback is that
these methods ([29], [30]) expect an input of a certain length,
so dummy packets are needed for less than N -packet flows.

IV. SYSTEM DESIGN

Our main design objective was to provide a lightweight
method aiming for the best trade-off between attack mitigation
metrics and detection timeliness. We thus had to consider:
I) providing attack-distinguishing features in a timely manner
and II) evaluating such features quickly enough to keep up
with the network. Despite achieving similarly high detection
rates [31], flow-based data are not always sufficient for timely
detection, whereas processing every packet might be infeasi-
ble in large-scale networks. Therefore, we opted to employ
sliding-window statistics aggregated per source IP.

Since we aggregate the data based on the source IP address,
we expect the same-source traffic to be routed via the same
path so it can be captured. Actually, the detection method
only examines incoming (potentially malicious) traffic and
does not care about the responses, thus monitoring the packet-
wise traffic in an uni-flow manner. Relying only on ingress
traffic effectively decreases the detection latency, resource
requirements, and relaxes the constraints on traffic routing.

Windower is depicted in Fig. 1. Firstly, we extract header
values from each packet (Tab. I). They are used to compute the
current window statistics, which we aggregate by their source
IP. After a specified amount of windows is reached, window-
wise statistics are summarized, and standard deviations are
computed between windows (Sec. IV-A). Such summaries
(Tab. II) are fed into a model to determine whether the host
resembles anomalous behavior (Sec. IV-C). After detection,
attack mitigation is launched.

A. Feature Extraction and Statistics Computation
As illustrated by Fig. 1, our method is designed to process a

raw network data stream. However, instead of processing every
packet within the attack discriminator, we extract relevant
packet features and compute communication statistics for each
source IP address using summarized sliding windows for
attack detection. This process is divided into several steps:

1) Packet Feature Extraction: We utilize only packet
headers (Tab. I) instead of payloads, making the method
application-level independent and unaffected by encryption.
Features can characterize various DDoS attacks with temporal
and packet sizing patterns different from benign traffic.

2) Sliding Window Per-Source Aggregation: We aggregate
packet features by their source IP address inside a sliding
window of t seconds. Aggregation per source IP creates a
natural communication context, providing rigorous patterns of
a single host across multiple network flows. No additional
correlation between network flows is hence required.

Aggregation within the current window is done by counts,
sums, averages, standard deviations, minimums, maximums,
unique counts, and an entropy estimation for every unique
IP in the window (Tab. II). As the mechanism might need to
process dozens of gigabits per second, it would be infeasible to
store extracted features from all packets within each window.

Counts, sums, minimums, and maximums can be computed
on the go by a simple update. However, computations of
regular average and variance assume that all the samples are
available at the time of the computation. For this reason,
we utilize data stream (running) algorithms to compute such
statistics without storing samples. The streaming mean is
computed using Eq. 1, and we use Welford’s algorithm [32]
for variance. It maintains an auxiliary value si updated for
every element (Eq. 2) along with running mean xi (Eq. 1). As
the window finishes, the variance estimate is computed using
Eq. 3, and the standard deviation then simply as σ=

√
s2.

xn =xn−1 +
xn − xn−1

n
(1)

sn= sn−1+(xn−xn)·(xn−xn−1) (2) s2=
sn

n− 1
(3)

Computing the unique source port count would normally be
trivial via the cardinality of a set. Nevertheless, sets require

TABLE I: List of all extracted packet features.
# Packet Features (I=Integer, S=String, B=Boolean)
1. Timestamp (I) 5. Destination IP (S) 7. Headers length (I)
2. Source IP (S) 6. Destination port (I) 8. Payload length (I)
3. Source port (I) 4. L4 protocol (I) 9. IP fragmented (B)



TABLE II: List of all intra- and inter-window statistics.
# Intra-Window Statistics
1. src ip IP address for the corresponding statistics
2. window count Number of summarized windows
3. window span The first and the last window ID difference
4. pkts total Total number of packets
5. bytes total Sum of bytes of all packets
6. pkt rate Estimate of a packets per second (pps) value
7. byte rate Estimate of a bytes per second (bps) value
8. pkt arrivals avg Average time between packet arrivals
9. pkt arrivals std Standard deviation between packet arrivals

10. pkt size min Overall minimum packet size
11. pkt size max Overall maximum packet size
12. pkt size avg Average of packet sizes
13. pkt size std Standard deviation of packet sizes
14. proto tcp share TCP traffic share
15. proto udp share UDP traffic share
16. proto icmp share ICMP traffic share
17. port src unique Number of unique source ports
18. port src entropy Source port entropy
19. conn pkts avg Average number of socket-to-socket transfers
20. pkts frag share Fragmented packets share
21. hdrpkt ratio avg Average of header to packet size ratio

# Inter-Window Statistics (Std=Standard Deviation)
22. pkts total std Std of a total number of packets
23. bytes total std Std of a total number of bytes
24. pkt size avg std Std of packet size averages
25. pkt size std std Std of packet size stds
26. pkt arrivals avg std Std of average time between packet arrivals
27. port src unique std Std of number of unique source ports
28. port src entropy std Std of source port entropy values
29. conn pkts avg std Std of packet count per connection averages
30. pkts frag share std Std of fragmented packets share
31. hdrpkt ratio avg std Std of header to whole packet ratios
32. main proto ratio std Std of ratio of the dominant L4 protocol
33. intrawin activity ratio IP estimate within the windows
34. interwin activity ratio IP estimate during the period

saving every unique element in the memory. Instead, we rely
on HyperLogLog (HLL) [33], a probabilistic structure for
reducing space demands. It cannot give a definite answer
but provides an approximation within some maximum error
range [34]. Using HLL, we achieve a standard error of 4.6%
with less than 1 kB of memory per single window entry.

Lastly, we compute the client’s source port entropy (the
amount of randomness). Although several techniques for cal-
culating streaming entropy exist [35], [36], we opted for reg-
ular Shannon Entropy [37] computed from a sample of n=40
observed source ports obtained by Reservoir sampling [38].

3) Intra-Window Statistics: After the current window fin-
ishes, a new one is started. However, some information is not
used as collected, but additional (intra-window) statistics are
computed (Tab. II). Windows are considered valid when they
contain at least p packets. Such a restriction aims to reduce
statistical noise introduced by small sample sizes. This phase
also computes running variances and other statistics, like the
average number of packets per connection.

4) Window Summarization and Inter-Window Statistics:
Using only one window might not properly capture the vari-
ability of communication over time. For instance, flash events
resemble identical characteristics to a DDoS [39]. When a
flash event is captured by a single window, its features might
look similar to an attack. To make Windower more robust, we

utilize multiple windows to describe communication patterns
more reliably. The functionality is achieved by 1) summarizing
multiple windows and 2) computing additional inter-window
statistics (Tab. II). Similarly to the minimum packet limit, we
set the minimum window count w for noise reduction.

After collecting w windows, the features are summarized
via arithmetic means over available per-IP window statistics.
We compute TCP, UDP, and ICMP traffic shares, as well as
the header-to-payload length ratio. For specific attacks, e.g.,
SYN flood, the attacker sends packets without payload. These
features can thus help to reveal noticeable attack patterns.

Inter-window statistics are computed as standard deviations
of corresponding statistics across windows. Their rationale
is that regular benign traffic would likely have a substantial
variance over machine-generated attacks. Attack tools usually
limit an attack to a specific bitrate, achieving high uniformity,
thus leading to low variance across multiple time windows.
The premise might be incorrect for pulsing DDoS [40] or
benign streaming services. Nevertheless, we compensate for it
with other features (packet size analysis and packet/byte rates).

We also estimate the client’s intra- and inter-window activity
during the analyzed period. Intra-window activity is based on a
communication gap at the start and end of the window (Eq. 4).
Inter-window activity is given as a ratio of the summarized
window count to all possible windows within the range (Eq. 5).
Due to the p packets window validity requirement, a client
might not produce enough data to fill in the window, whereas
a flooding attack should have both values close to 1.

aintra=
tlast-pkt−tfirst-pkt

twin-len
(4) ainter=

#windows-summarized

IDlast-win−IDfirst-win
(5)

5) Statistics Preprocessing: Statistics computed in the pre-
vious phase require preprocessing before being fed into the
attack discriminator. Although the source IP is important
for alerting and mitigation, we drop it before classification
to prevent evaluation bias [41]. We further drop features
window count and window span, which can be useful during
postprocessing to adjust the decision confidence but are not
helpful during the classification itself. Therefore, 31 features
to process within the detection model are left. Since all are
numerical, no encoding is required. Nevertheless, we rescale
them with z-score normalization to maximize the performance.

B. Hyperparameters Summary

In summary, we can tune the following parameters influencing
the method’s performance:

• Window length (t): Length of a sliding window in seconds.
• Packet count (p): We consider a window valid only if a

certain source host sent at least p packets within it.
• Window count (w): The feature vector is finalized once at

least w windows are collected in the last v seconds.
• Window validity (v): Windows older than v seconds are

outdated and not considered for statistics computation.
As a consequence of our design, an attack can only be

detected in t · w seconds, supposing that each window has at
least p packets and no window got invalidated due to exceeding



Fig. 2: KitNet [9] architecture, the ensemble of autoencoders.

maximum validity time v. Longer windows are considered
more reliable (decreasing false positives), while shorter allow
faster detection. Packet count p assures reliable intra-window,
while window count w ensures reliable inter-window statistics.

C. Attack Detection

For a demonstration of the attack-detection capabilities, we
employed KitNet [9]. However, the extracted features can be
utilized by both misuse- and anomaly-based detectors.

KitNet (Fig. 2) is an ensemble of k three-layer autoencoders
(AEs). It is a part of Kitsune [9], a state-of-the-art anomaly-
based NIDS for online attack detection. Each ensemble AE
measures the abnormality of its respective subspace v⃗i, given
by input x⃗ mapping f into k−1 subspaces, producing a Root
Mean Squared Error (RMSE) value. RMSEs are then led to
the autoencoder at the output layer, giving a final RMSE value.

During training (with benign only), the model first learns the
feature mapping function f using agglomerative hierarchical
clustering. In our case, x⃗ is a vector of 31 elements. Indi-
vidual autoencoders then learn distributions of their respective
subspaces v⃗i, and the output layer AE learns the relationship
between subspace abnormalities and naturally occurring noise.

The evaluation phase uses learned mapping f and individual
autoencoder distributions to produce the final RMSE score.
We compare it with the predefined threshold τ , RMSE>τ
representing an anomaly. During mitigation, we correlate
anomalies with the acting source IP to drop its packets. Further
KitNet details can be found in the original Kitsune paper [9].

V. EVALUATION

We evaluate Windower using four packet-based datasets.
This section describes our setup and analyzes the performance
compared with Kitsune [9]. We also analyze the performance
by varying windowing configurations and discuss the detection
speed, KitNET’s complexity, and the runtime performance.

A. Utilized Datasets

The selection of a suitable dataset was non-trivial as the
NIDS domain suffers from a long-term shortage of standard-
ized quality datasets [6], [42], [43]. Although various datasets
were released recently [44], none cover a wide variety of
DDoS attacks and provide packet-based data suitable for our
purposes. Datasets are very limited in the attack scope or the
number of attacking hosts. For instance, CIC-DDoS2019 [14]
provides various DDoS attacks, but all its attack traffic comes

from a single IP address. Since we perform aggregation based
on source IPs, we could not use it because it produced too few
aggregated window entries, insufficient for reliable evaluation.

As no dataset is perfect [45], we used multiple ones to
evaluate our work in different scenarios and thus strengthen
the achieved results and stated claims. When discussing the
CAIDA dataset, we refer to a custom mix of the CAIDA DDoS
Attack 2007 dataset [46] and the CAIDA Anonymized Internet
Traces [47]. Since the DDoS dataset contains only attack
traffic, we mixed it with benign traffic from CAIDA Traces.
CTU-13 [48] is a dataset of real botnet traffic. We extracted
only DDoS from the scenario 45, excluding any C&C traffic.
Similarly, we extracted only packets corresponding to the DoS
traffic class along with a subset of normal traffic from UNSW-
NB15 [49]. Former datasets consist primarily of flood attacks.
In order to test the performance against slow DoS attacks as
well, we used the SUEE8 variant of the SUEE-2017 [50].

For our purposes, we extracted only the forward direction
(targeting the protected network) without responses and cre-
ated a train set (only benign) and a test set (both benign and
malicious traffic) for each dataset, assuming distinct attacking
and legitimate IP addresses. We thus label the datasets via
attackers’ IPs. The number of packets, along with their class
affiliation, is given in Tab. IV. Full details about the dataset
compilation process are provided on our GitHub (Sec. I).

B. Experiments Setup

We implemented Windower in Python to process the dis-
cussed datasets. The evaluation utilized a full feature set – 31
features after preprocessing (Sec. IV-A). A fair comparison
with Kitsune was achieved using the same attack detector –
KitNET, with equal parameters, i.e., m=10 (the maximum
number of inputs for each AE) and the same feature map-
ping procedure. Performance comparisons of our system with
Kitsune are based on its original Python implementation [9].
During training, we always use 10% of the training set for
feature mapping. Unless stated otherwise, we set the Win-
dower’s parameters as follows: t=1, p=10, w=6, and v=120,
i.e., aggregate features across six 1-second long windows.

We executed the experiments on a single CPU core (Intel
Xeon E5-2630v3) and 64 GB of RAM. Given modern NICs
support of distributing packets into multiple receive queues
processed by separate cores, the implementation can be easily
parallelized and accelerated in the future.

C. Per-Packet Mitigation Analysis

We evaluate detection capabilities using a simulated mitiga-
tion process based on RMSE scores. Fig. 3 shows the RMSE
scores assigned to each packet in the CAIDA dataset for both
Kitsune and Windower. We use different colors to distinguish
scores of benign (green) and attack (red) packets. Each data
point in the figure represents a single packet classification.

For Kitsune (Fig. 3a), the output layer produces the RMSE
score for each packet as an implicit result of the per-packet
processing approach. We can compare this score with a prede-
fined threshold τ to decide whether to drop or pass the packet.



TABLE III: Comparison of mitigation performance using TPR for FPR={0.002, 0.005, 0.01, 0.02, 0.05}.

Dataset FPR=0.002 FPR=0.005 FPR=0.01 FPR=0.02 FPR=0.05
Kitsune Windower Kitsune Windower Kitsune Windower Kitsune Windower Kitsune Windower

CAIDA 0.00000 0.98964 0.00000 0.98964 0.00000 0.98964 0.00000 0.98964 0.00000 0.98964
CTU-13 0.00000 0.99859 0.00000 0.99859 0.00000 0.99859 0.00000 0.99859 0.00000 0.99859

UNSW-NB15 0.54952 0.57073 0.60907 0.66585 0.73372 0.73230 0.81191 0.86095 0.85211 0.97638
SUEE-2017 0.07270 0.22996 0.23747 0.36122 0.33350 0.91729 0.48011 0.91729 0.92678 0.91729

(a) Kitsune

0 50 100 150 200 250 300
time [seconds]

10 3

10 2

10 1

RM
SE

 (l
og

 sc
al

ed
)

Benign packets
Attack packets

(b) Windower

0 50 100 150 200 250 300
time [seconds]

0

10 2

10 1

100

101

102

RM
SE

 (l
og

 sc
al

ed
)

Benign packets
Attack packets

Fig. 3: Visualization of the per-packet Root Mean Square Error
(RMSE) values evaluated using the CAIDA dataset.

Unlike Kitsune, Windower (Fig. 3b) always produces an
RMSE score for a specific source IP address and its corre-
sponding feature vector based on an aggregated set of time
window statistics. To plot Fig. 3b and to fairly compare both
solutions, we thus assign RMSE scores to packets during
postprocessing according to the latest source IP address clas-
sification. In practice, we would directly compare the score
of each source IP address classification with τ to immediately
decide whether to drop or allow all its packets. For this reason,
in Fig. 3b, the RMSE values for individual packets create 6-
second segments (lines) as we are dealing with the time-based
source IP aggregated windows.

The approach using source IP window-based classification
will always introduce a small number of false negatives by
design. In the first 50 seconds of CAIDA, in Fig. 3b, one can
see several packets assigned zero RMSE score. These packets
will be allowed due to not having enough collected data (at
least six 1-second time windows) to classify their source IP
address, so their RMSE value is undefined. Unless stated
otherwise, we always include such false negatives caused by
detection delays in the performance evaluation metrics.

As evident from Fig. 3, Windower outperforms Kitsune
on the CAIDA dataset. For Windower, we can easily find a
threshold, e.g., τ=10, that ideally separates legitimate (green)
and attack (red) traffic using the RMSE scores. In contrast
to Kitsune, we can only find such τ by introducing a non-
negligible number of false positives or negatives.

(a) CAIDA dataset

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Windower (AUC=0.99)
Kitsune (AUC=0.84)
Chance level (AUC=0.5)

(b) CTU-13 dataset

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Windower (AUC=1.00)
Without fragments (AUC=0.96)
Kitsune (AUC=0.70)
Chance level (AUC=0.5)

(c) UNSW-NB15 dataset

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Windower (AUC=0.98)
Kitsune (AUC=0.98)
Chance level (AUC=0.5)

(d) SUEE-2017 dataset

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Windower (AUC=0.92)
Kitsune (AUC=0.98)
Chance level (AUC=0.5)

Fig. 4: Mitigation performance depicted using ROC curves.

D. Mitigation Performance

We investigate the method’s performance regardless of a
specific τ using an ROC (Receiver Operating Characteristics)
curve. It plots true (TPR) versus false positive rates (FPR) with
regard to increasing threshold. The numerical representation
of the classifier’s performance is given by the Area Under the
ROC Curve (AUC), i.e., AUC=1.0 being a perfect score.

Fig. 4 compares Windower (orange) against Kitsune (red) in
terms of mitigation performance using ROC curves. In cases
of CAIDA and CTU-13, Windower significantly outperforms
Kitsune. For both datasets, Kitsune introduces a substantial
amount of false positives (above 30%) to detect a similar num-
ber of malicious packets as Windower. From the AUC score
perspective, Windower achieves AUC=0.99 for CAIDA and
AUC=1.00 for CTU-13, respectively, while Kitsune reaches
only AUC=0.84 for CAIDA and AUC=0.70 for CTU-13.

In contrast, the mitigation performance is more or less
comparable for UNSW-NB15 and SUEE-2017. Regarding the
AUC score, both methods achieved AUC=0.98 for UNSW-
NB15, and Kitsune (AUC=0.98) even outperformed Win-
dower (AUC=0.92) for SUEE-2017. However, Windower still
introduces fewer false positives with significantly fewer com-
putational requirements (Sec. V-F). We give detailed TPR/FPR
results in Tab. III. In the DDoS mitigation case, we are more



(a) UNSW-NB15 dataset

1 2 3 4 5 6 7 8 9 10 11 12
Window count (w)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ar
ea

 U
nd

er
 th

e 
RO

C 
Cu

rv
e 

(A
UC

)

Window-based classification
Packet-based classification

(b) CTU-13 dataset

1 2 3 4 5 6 7 8 9 10 11 12
Window count (w)

0.95

0.96

0.97

0.98

0.99

1.00

Ar
ea

 U
nd

er
 th

e 
RO

C 
Cu

rv
e 

(A
UC

)

Window-based classification
Packet-based classification

Fig. 5: Windows count (w) analysis using AUC.

concerned with false positives than false negatives. We thus
claim that Windower still achieves decent performance for
slow attacks with meaningful benefits over Kitsune.

Analysis of CTU-13 revealed that a significant portion of
attack traffic is fragmented. For this reason, we analyzed
Windower’s performance with and without two fragmentation-
related features. As seen in Fig. 4b, the performance without
fragmentation (green) achieves an AUC of 0.96. With frag-
mentation, even AUC=1.00 is achieved. Nevertheless, both
variants significantly outperform Kitsune (AUC=0.70).

E. Window Count Impact: Detection Delay vs. Accuracy
Fig. 5 investigates the impact of the number of collected

windows on the Windower’s performance. It shows the AUC
score (y-axis) for the UNSW-NB15 and CTU-13 datasets with
the varying parameter w – the minimum number of collected
windows. We present the score from two different viewpoints:

1) Window-based classification (orange) shows the perfor-
mance without the impact of false negative packet classifica-
tion (discussed in Sec. V-C) caused by the delay in collecting
the minimum number of windows. It reveals the pure success
rate of source IP address classifications (benign vs. attack
source). The more windows we use (the more statistics we
have collected), the higher the classification accuracy.

2) Packet-based classification perspective (red) considers
the impact of the delay in collecting the specified number of
windows. For instance, Windower performs best if w=5 for
UNSW-NB15 and w=6 for CTU-13, respectively. Indeed, the
more windows we use (the more time we need for collection),
the higher the false negative rate effect. The parameter w
generally enables fine-tuning the trade-off between detection
accuracy and its delay in real-time mitigation.

F. Runtime Performance
Tab. IV shows the runtime performance and compares Win-

dower with Kitsune for all datasets. As apparent, Windower
outperforms Kitsune in both training and evaluation runtimes.
For illustration, Kitsune needs 83.1min. for training, while the
Windower needs only 14.1min. (∼6x faster) using CAIDA. In
some cases, the speed-up is even more significant (an order of
magnitude) for the CTU-13 and SUEE-2017 datasets.

Although Kitsune relies on the ensemble of small autoen-
coders to increase its speed, it must still evaluate each incom-
ing packet. In addition, the computational complexity of the

ensemble itself grows with the number of features. Kitsune’s
feature extractor derives more than a hundred features for each
packet to maintain its context aggregated based on source IP
address, as well as channel and socket perspectives.

In contrast, Windower reduces the feature count (only 31) by
using statistical features computed across multiple windows.
A smaller feature set results in fewer ensemble autoencoders
to train and evaluate. Tab. IV also presents the number of
autoencoders for individual datasets (# AEs). As demonstrated,
Windower requires up to 2-3x less AEs.

More importantly, we substantially lower the number of
ensemble evaluations (AE evals). For Kitsune, it coincides with
the packet count as it works on a per-packet basis, e.g., ∼3M
AE evaluations using CAIDA. On the other hand, Windower
classifies window-based feature aggregates and blocks packets
based on source IP addresses. Using the same dataset, it needs
no more than 3k evaluations (three orders of magnitude less).
For this reason, Windower is fundamentally faster and still
offers similar, or even better, mitigation performance.

VI. DISCUSSION

In this section, we discuss possibilities of advanced miti-
gation, elaborate on real-time operation, and outline probable
adversarial behavior and attacks against the system itself.

A. Intelligent Mitigation

In the previous section, we demonstrated the mitigation
capabilities using an Access Control List (ACL) mechanism.
If an anomalous IP is determined, it is denylisted, and all its
consequent traffic is explicitly dropped. We further suggest
performing ACL filtering before the Windower processing
itself. This can save resources by discarding data from poten-
tially malicious clients using hardware, hence not analyzing
the traffic of denylisted hosts. After a certain period, the
denylist entry expires, and the host’s traffic is allowed again.

More advanced mitigation can be achieved by signature or
rule derivation. For instance, if Windower detects a host acting
anomalously, it could sample its future traffic. Afterward,
algorithms based on string matching [51], state machines [52],
string patterns or semantic conditions [53], or AI [54] can be
applied to fill up the database of mitigation rules.

Assuming that the same malicious tool generated the attack,
there should be similarities in its traffic. If an attacker had not
utilized any obfuscation (discussed in Sec. VI-C), the created
rules should generalize and block the traffic even from clients
not analyzed by the attack detection mechanism.

B. Real-Time Performance

Windower aims to provide reliable real-time DDoS attack
detection – a trade-off between detection performance and
delay. Per-packet methods (hypothetically) offer the best time-
liness, as we know whether to drop or pass a packet instantly.
However, deep ML models are too complex to process every
packet and meet throughput demands. We thus investigated
how to remove the model evaluation from the data path and



TABLE IV: Comparison of Windower’s and Kitsune’s runtime performance.

Dataset # packets Kitsune runtime performance Windower runtime performance
trainset evalset (attack / all) train [min] eval [min] # AEs AE evals train [min] eval [min] # AEs AE evals

CAIDA 2 003 716 944 764 3 067 177 83.1 76.4 31 3 067 177 14.1 23.6 9 2 789
CTU-13 21 498 729 190 859 18 807 679 2 464.9 6 538.8 16 18 807 679 197.4 178.6 8 2 675

UNSW-NB15 3 179 605 140 360 10 126 614 80.1 150.7 15 10 126 614 26.8 90.5 13 15 182
SUEE-2017 104 313 15 694 291 384 22.6 148.9 22 291 384 1.2 3.2 14 6 812

limit the number of its evaluations to allow for high packet
processing speeds and keep up with the incoming traffic.

Our current Windower’s implementation as a single Python
process achieves a throughput of ∼2 kpps. However, our de-
sign enables almost linear parallelization via source IP hashing
along with separating windowing and attack detection. In such
a scheme, the data plane handles feature extraction and intra-
window statistics computation. In contrast, the control plane
finalizes the streaming and inter-window statistics and runs
the attack discriminator upon finishing the window. The model
evaluation is thus removed from the data path, speeding up the
overall throughput, while the detection delay is controlled via
windowing parameters – the window length and the minimum
number of summarized windows.

We highlight that Windower’s deployment cost is also
significantly lower by not evaluating every packet in the attack
discriminator. The proposal thus brings a suitable practical
trade-off for precise attack detection with regard to computing
resources by redesigning only the data preprocessing.

C. Adversarial Considerations

While Windower achieves promising results and has several
strengths, it is still not entirely foolproof to various adversarial
techniques – most notably, source IP randomization. Below,
we examine variants depending on the adversary’s knowledge.

Black-box adversaries lack the system knowledge and thus
cannot tailor attacks to overcome the detection mechanism.
This is a common assumption for DDoS, which relies on an
overwhelming traffic volume rather than attack sophistication.
Adversaries often use well-known flooding or slow DoS [55].
Despite being designed against flooding attacks, our method
shows potential in detecting slow DoS attacks as well.

Our experiments demonstrate the effectiveness against
flooding, sharing common characteristics like increased re-
quest rates, specific packet timing, or sizing. Since we do
not analyze upper protocol headers, this also applies to multi-
vector attacks. Adaptive adversaries may use obfuscation like
varying packet sizes, inter-packet timings, or payload random-
ization. Although it could degrade detection capabilities, we
argue that normal behavior could hardly be simulated so that
some attack patterns would remain visible. Additionally, the
need for obfuscation techniques increases the attacker’s cost.

A significant threat to our method is source IP random-
ization. While the method can efficiently handle common
source address spoofing (unless the IP stays the same), it
struggles when each packet’s source IP is randomized, leading
to increased memory consumption and statistics computation
issues. We address the memory concerns by limiting stored
historical windows and by dropping inactive ones with little

traffic. However, the computation issue cannot be handled at
the method’s level. No statistics can be computed if a per-
source IP window contains only one packet. It needs to be
tackled outside, e.g., by reverse path forwarding [56], [57] or
a specific NAT setup to mitigate IP spoofing. Another way of
solving the issue is by detecting an attack via correlation [58]
or by dropping spoofed packets via derived rules (Sec. VI-A).

Grey-box adversaries possess some system knowledge. Al-
though not typically considered for NIDS [59], we theorize
that such adversaries might predict the usage of anomaly-based
NIDS and windowing (common for real-time systems). They
may then employ adversarial learning, i.e., gradually retrain
the system by low amounts of attack traffic to decrease attack
sensitivity [60], supposing used incremental learning to tackle
concept drift [61]. The windowing can be challenged by puls-
ing DDoS, reducing efficiency for most systems with only a
single window. Nevertheless, our mechanism utilizes multiple
ones. Therefore, despite the pulsing effectively lowering the
averages, the inter-window variance would stay higher and
rather consistent, providing clues about anomalous activity.

White-box (full knowledge) scenarios are less likely as
details of NIDSs are typically well protected [62], and much
more devastating attacks such as data theft, malware, or
ransomware would become more attractive options instead [6].

VII. CONCLUSIONS

This work has presented Windower, a feature extraction
mechanism based on sliding window and stream data mining.
The windowing mechanism first collects per-source IP statis-
tics within a short time frame. They are further summarized
with several previous windows to determine more reliable
hosts’ communication patterns and temporal variability.

Windower achieved promising results, mitigating 99% of
malicious DDoS flooding traffic on two public datasets with
only 0.2% of false positives. With 1% of false positives, it
also successfully filtered 92% of low-rate DoS traffic. Our
solution outperforms Kitsune [9] while improving the runtime
performance by more than an order of magnitude, making our
method more suitable for real-world scenarios.

Windower currently treats statistics from different IPs in-
dependently. Our future plans involve exploring correlations
between statistics from various hosts, aiming to reduce false
positives and enhance flash crowd events resistance. Addition-
ally, enriching the feature set with application-level features
might help to characterize modern L7 (D)DoS attacks better.

ACKNOWLEDGEMENTS

We thank the project e-INFRA CZ (LM2023054) granted
by the Ministry of Education, Youth and Sports of the Czech
Republic and Brno University of Technology (FIT-S-23-8141).



REFERENCES

[1] P. J. Criscuolo, “Distributed denial of service: Trin00, tribe flood net-
work, tribe flood network 2000, and stacheldraht ciac-2319,” Department
of Energy Computer Incident Advisory Capability (CIAC), UCRL-ID-
136939, Rev, vol. 1, 2000.

[2] Cisco Systems Inc., “Cisco Annual Internet Report (2018–2023) White
Paper,” Cisco Systems Inc., San Jose, CA 95134 USA, Tech. Rep., 2018,
updated March 2020. Accessed 2023-09-03. [Online]. Available: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

[3] O. Yoachimik and J. Pacheco, “DDoS threat report for 2023 Q1,”
Cloudflare, Inc., Tech. Rep., Apr. 2023, acessed 2023-09-03. [Online].
Available: https://blog.cloudflare.com/ddos-threat-report-2023-q1/

[4] O. Kupreev, A. Gutnikov, and Y. Shmelev, “DDoS attacks in Q3 2022,”
Kaspersky, Tech. Rep., Nov. 2022, accessed 2023-09-03. [Online].
Available: https://securelist.com/ddos-report-q3-2022/107860/

[5] H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security in mobile ad hoc
networks: challenges and solutions,” IEEE Wireless Communications,
vol. 11, no. 1, pp. 38–47, 2004.

[6] G. Apruzzese, P. Laskov, and J. Schneider, “SoK: Pragmatic Assessment
of Machine Learning for Network Intrusion Detection,” in 2023 IEEE
8th European Symposium on Security and Privacy (EuroS&P). Los
Alamitos, CA, USA: IEEE Computer Society, jul 2023, pp. 592–614.

[7] B. Mukherjee, L. Heberlein, and K. Levitt, “Network intrusion detec-
tion,” IEEE Network, vol. 8, no. 3, pp. 26–41, Jun. 1994.

[8] A. Thakkar and R. Lohiya, “A survey on intrusion detection system:
feature selection, model, performance measures, application perspective,
challenges, and future research directions,” Artificial Intelligence Review,
vol. 55, no. 1, pp. 453–563, Jan 2022.

[9] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
Ensemble of Autoencoders for Online Network Intrusion Detection,”
in 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society, 2018.

[10] M. Mittal, K. Kumar, and S. Behal, “Deep learning approaches for
detecting DDoS attacks: a systematic review,” Soft Computing, vol. 27,
no. 18, pp. 13 039–13 075, Jan. 2022.

[11] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, Jun 2018.

[12] F. Ceschin, M. Botacin, A. Bifet, B. Pfahringer, L. S. Oliveira, H. M.
Gomes, and A. Grégio, “Machine learning (in) security: A stream of
problems,” Digital Threats, sep 2023.

[13] I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward Generat-
ing a New Intrusion Detection Dataset and Intrusion Traffic Characteri-
zation,” in 4th International Conference on Information Systems Security
and Privacy, Jan. 2018, pp. 108–116.

[14] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping Realistic Distributed Denial of Service (DDoS) Attack Dataset
and Taxonomy,” in 2019 International Carnahan Conference on Security
Technology (ICCST), 2019, pp. 1–8.

[15] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357–374,
2012.

[16] A. Bhardwaj, V. Mangat, R. Vig, S. Halder, and M. Conti, “Distributed
denial of service attacks in cloud: State-of-the-art of scientific and
commercial solutions,” Computer Science Review, vol. 39, p. 100332,
2021.

[17] R. Vijayasarathy, S. V. Raghavan, and B. Ravindran, “A system approach
to network modeling for DDoS detection using a Naı̀ve Bayesian
classifier,” in 2011 Third International Conference on Communication
Systems and Networks (COMSNETS 2011), 2011, pp. 1–10.

[18] S. M. Mousavi and M. St-Hilaire, “Early detection of DDoS attacks
against SDN controllers,” in 2015 International Conference on Comput-
ing, Networking and Communications (ICNC), 2015, pp. 77–81.

[19] A. Bhandari, K. Kumar, A. L. Sangal, and S. Behal, “An anomaly based
distributed detection system for DDoS attacks in Tier-2 ISP networks,”
Journal of Ambient Intelligence and Humanized Computing, vol. 12,
no. 1, pp. 1387–1406, Jan 2021.

[20] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C.
Chan, “GEE: A Gradient-based Explainable Variational Autoencoder for
Network Anomaly Detection,” in 2019 IEEE Conference on Communi-
cations and Network Security (CNS), 2019, pp. 91–99.

[21] K. Wang and S. J. Stolfo, “Anomalous Payload-Based Network Intrusion
Detection,” in Recent Advances in Intrusion Detection, E. Jonsson,
A. Valdes, and M. Almgren, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 203–222.

[22] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” in
Proceedings of the 13th USENIX Conference on System Administration,
ser. LISA ’99. USA: USENIX Association, 1999, p. 229–238.

[23] X. Yuan, C. Li, and X. Li, “DeepDefense: Identifying DDoS Attack
via Deep Learning,” in 2017 IEEE International Conference on Smart
Computing (SMARTCOMP), 2017, pp. 1–8.

[24] Y. Li and Y. Lu, “LSTM-BA: DDoS Detection Approach Combining
LSTM and Bayes,” in 2019 Seventh International Conference on Ad-
vanced Cloud and Big Data (CBD), 2019, pp. 180–185.

[25] M. A. Salahuddin, V. Pourahmadi, H. A. Alameddine, M. F. Bari,
and R. Boutaba, “Chronos: DDoS Attack Detection Using Time-Based
Autoencoder,” IEEE Transactions on Network and Service Management,
vol. 19, no. 1, pp. 627–641, 2022.

[26] R. Doshi, N. Apthorpe, and N. Feamster, “Machine Learning DDoS
Detection for Consumer Internet of Things Devices,” in 2018 IEEE
Security and Privacy Workshops (SPW), 2018, pp. 29–35.

[27] GÉANT Security, “Nemo ddos software,” accessed 2024-01-11.
[Online]. Available: https://security.geant.org/nemo-ddos-software/

[28] K. Yang, J. Zhang, Y. Xu, and J. Chao, “DDoS Attacks Detection with
AutoEncoder,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations
and Management Symposium, 2020, pp. 1–9.

[29] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martı́nez-del Rincón,
and D. Siracusa, “Lucid: A Practical, Lightweight Deep Learning
Solution for DDoS Attack Detection,” IEEE Transactions on Network
and Service Management, vol. 17, no. 2, pp. 876–889, 2020.

[30] X. Liang and T. Znati, “A Long Short-Term Memory Enabled Frame-
work for DDoS Detection,” in 2019 IEEE Global Communications
Conference (GLOBECOM), 2019, pp. 1–6.

[31] G. Olimpio, P. F. C. Silva, L. Camargos, R. S. Miani, and E. R.
de Faria, “Intrusion detection over network packets using data stream
classification algorithms,” in 2021 IEEE 33rd International Conference
on Tools with Artificial Intelligence (ICTAI), 2021, pp. 985–990.

[32] B. P. Welford, “Note on a Method for Calculating Corrected Sums of
Squares and Products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[33] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog:
the analysis of a near-optimal cardinality estimation algorithm,” in
AofA: Analysis of Algorithms, ser. DMTCS Proceedings, P. Jacquet,
Ed., vol. DMTCS Proceedings vol. AH, 2007 Conference on Analysis
of Algorithms (AofA 07). Discrete Mathematics and Theoretical
Computer Science, 06 2007, pp. 137–156.

[34] A. Singh, S. Garg, R. Kaur, S. Batra, N. Kumar, and A. Y. Zomaya,
“Probabilistic data structures for big data analytics: A comprehensive
review,” Knowledge-Based Systems, vol. 188, p. 104987, 2020.

[35] N. J. Harvey, J. Nelson, and K. Onak, “Sketching and Streaming Entropy
via Approximation Theory,” in 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, 2008, pp. 489–498.

[36] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data Streaming
Algorithms for Estimating Entropy of Network Traffic,” in Proceedings
of the Joint International Conference on Measurement and Modeling of
Computer Systems, ser. SIGMETRICS ’06/Performance ’06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 145–156.

[37] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[38] K.-H. Li, “Reservoir-Sampling Algorithms of Time Complexity O(n(1
+ Log(N/n))),” ACM Transactions on Mathematical Software, vol. 20,
no. 4, p. 481–493, Dec. 1994.

[39] S. Behal, K. Kumar, and M. Sachdeva, “Characterizing DDoS attacks
and flash events: Review, research gaps and future directions,” Computer
Science Review, vol. 25, pp. 101–114, 2017.

[40] X. Luo and R. K. C. Chang, “On a New Class of Pulsing
Denial-of-Service Attacks and the Defense,” in Proceedings
of the Network and Distributed System Security Symposium,
NDSS 2005, San Diego, California, USA. The Internet Society,
2005. [Online]. Available: https://www.ndss-symposium.org/ndss2005/
new-class-pulsing-denial-service-attacks-and-defense/

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://blog.cloudflare.com/ddos-threat-report-2023-q1/
https://securelist.com/ddos-report-q3-2022/107860/
https://security.geant.org/nemo-ddos-software/
https://www.ndss-symposium.org/ndss2005/new-class-pulsing-denial-service-attacks-and-defense/
https://www.ndss-symposium.org/ndss2005/new-class-pulsing-denial-service-attacks-and-defense/


[41] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning
in computer security,” in 31st USENIX Security Symposium, USENIX
Security 2022, Boston, MA, USA, August 10-12, 2022, K. R. B. Butler
and K. Thomas, Eds. USENIX Association, 2022, pp. 3971–3988.

[42] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, p. e4150, Oct. 2021.

[43] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” in 2010 IEEE
Symposium on Security and Privacy, 2010, pp. 305–316.

[44] Z. Yang, X. Liu, T. Li, D. Wu, J. Wang, Y. Zhao, and H. Han, “A
systematic literature review of methods and datasets for anomaly-based
network intrusion detection,” Computers & Security, vol. 116, p. 102675,
May 2022.

[45] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A
survey of network-based intrusion detection data sets,” Computers &
Security, vol. 86, pp. 147–167, 2019.

[46] “The CAIDA UCSD ”DDoS Attack 2007” Dataset,” accessed:
2023-10-03. [Online]. Available: https://www.caida.org/catalog/datasets/
ddos-20070804 dataset/

[47] “The CAIDA UCSD Anonymized Internet Traces,” accessed: 2023-10-
03. [Online]. Available: https://www.caida.org/catalog/datasets/passive
dataset/

[48] S. Garcı́a, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” Computers & Security, vol. 45, pp.
100–123, 2014.

[49] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 Military Communications and Information Systems Conference
(MilCIS), Nov. 2015, pp. 1–6.

[50] T. Lukaseder, “Github: 2017-SUEE-data-set,” 2017, ac-
cessed: 2023-10-03. [Online]. Available: https://github.com/vs-uulm/
2017-SUEE-data-set

[51] R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao, “A Fast String-
Matching Algorithm for Network Processor-Based Intrusion Detection
System,” ACM Trans. Embed. Comput. Syst., vol. 3, no. 3, p. 614–633,
aug 2004.

[52] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu, “Fast Regular
Expression Matching Using Small TCAMs for Network Intrusion De-
tection and Prevention Systems,” in 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings. USENIX
Association, 2010, pp. 111–126.

[53] P.-C. Lin, Y.-D. Lin, and Y.-C. Lai, “A Hybrid Algorithm of Backward
Hashing and Automaton Tracking for Virus Scanning,” IEEE Transac-
tions on Computers, vol. 60, no. 4, pp. 594–601, 2011.

[54] M. Zadnik and E. Carasec, “AI infers DoS mitigation rules,” Journal of
Intelligent Information Systems, vol. 60, no. 2, pp. 305–324, Aug 2022.

[55] W. Zhijun, L. Wenjing, L. Liang, and Y. Meng, “Low-Rate DoS Attacks,
Detection, Defense, and Challenges: A Survey,” IEEE Access, vol. 8, pp.
43 920–43 943, 2020.

[56] D. Senie and P. Ferguson, “Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing,” RFC
2827, May 2000. [Online]. Available: https://www.rfc-editor.org/info/
rfc2827

[57] K. Sriram, D. Montgomery, and J. Haas, “Enhanced Feasible-Path
Unicast Reverse Path Forwarding,” RFC 8704, Feb. 2020. [Online].
Available: https://www.rfc-editor.org/info/rfc8704

[58] S. Yu, W. Zhou, W. Jia, S. Guo, Y. Xiang, and F. Tang, “Discriminating
DDoS Attacks from Flash Crowds Using Flow Correlation Coefficient,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 6,
pp. 1073–1080, 2012.

[59] G. Apruzzese, P. Laskov, E. Montes de Oca, W. Mallouli,
L. Brdalo Rapa, A. V. Grammatopoulos, and F. Di Franco, “The Role
of Machine Learning in Cybersecurity,” Digital Threats, vol. 4, no. 1,
pp. 1–38, Mar. 2023.

[60] A. Patcha and J.-M. Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Computer
Networks, vol. 51, no. 12, p. 3448–3470, Aug. 2007.

[61] C. Nixon, M. Sedky, and M. Hassan, “Reviews in Online Data Stream
and Active Learning for Cyber Intrusion Detection - A Systematic
Literature Review,” in 2021 Sixth International Conference on Fog and
Mobile Edge Computing (FMEC), 2021, pp. 1–6.

[62] G. Apruzzese, M. Andreolini, L. Ferretti, M. Marchetti, and M. Cola-
janni, “Modeling Realistic Adversarial Attacks against Network Intru-
sion Detection Systems,” Digital Threats, vol. 3, no. 3, feb 2022.

https://www.caida.org/catalog/datasets/ddos-20070804_dataset/
https://www.caida.org/catalog/datasets/ddos-20070804_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/
https://github.com/vs-uulm/2017-SUEE-data-set
https://github.com/vs-uulm/2017-SUEE-data-set
https://www.rfc-editor.org/info/rfc2827
https://www.rfc-editor.org/info/rfc2827
https://www.rfc-editor.org/info/rfc8704

	Introduction
	Flow-Based DDoS Detection Pitfalls
	Related Work: Real-Time ML DDoS Detection
	Window Aggregates
	Per-Packet Processing
	Subflows

	System Design
	Feature Extraction and Statistics Computation
	Packet Feature Extraction
	Sliding Window Per-Source Aggregation
	Intra-Window Statistics
	Window Summarization and Inter-Window Statistics
	Statistics Preprocessing

	Hyperparameters Summary
	Attack Detection

	Evaluation
	Utilized Datasets
	Experiments Setup
	Per-Packet Mitigation Analysis
	Mitigation Performance
	Window Count Impact: Detection Delay vs. Accuracy
	Runtime Performance

	Discussion
	Intelligent Mitigation
	Real-Time Performance
	Adversarial Considerations

	Conclusions
	References

