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ABSTRACT

Bayesian HMM clustering of x-vector sequences (VBx) has be-
come a widely adopted diarization baseline model in publications
and challenges. It uses an HMM to model speaker turns, a gen-
eratively trained probabilistic linear discriminant analysis (PLDA)
for speaker distribution modeling, and Bayesian inference to esti-
mate the assignment of x-vectors to speakers. This paper presents
a new framework for updating the VBx parameters using discrim-
inative training, which directly optimizes a predefined loss. We
also propose a new loss that better correlates with the diarization
error rate compared to binary cross-entropy — the default choice
for diarization end-to-end systems. Proof-of-concept results across
three datasets (AMI, CALLHOME, and DIHARD II) demonstrate
the method’s capability of automatically finding hyperparameters,
achieving comparable performance to those found by extensive grid
search, which typically requires additional hyperparameter behavior
knowledge. Moreover, we show that discriminative fine-tuning of
PLDA can further improve the model’s performance. We release the
source code with this publication.

Index Terms— speaker diarization, VBx, clustering, variational
Bayes, discriminative training

1. INTRODUCTION

Speaker diarization systems split audio recordings into speaker-
homogenous segments and assign them speaker labels. Currently,
three main approaches are used: clustering-based [1, 2], end-to-end
[3, 4], or hybrid (combination of both)[5, 6]. While the latter two
are the state-of-the-art [4, 6], clustering-based VBx diarization is
competitive in wide-band multi-speaker domains [6]. Besides, VBx
has been widely adopted in the community as a baseline both in
publications [4, 7] and in diarization challenges [8, 9, 10] as well as
a reclustering stage in some systems [11, 12].

VBx is a clustering-based approach [2], which requires as input
a sequence of x-vectors [13] extracted from a uniformly segmented
audio, and some corresponding initial labels, which are usually ob-
tained by agglomerative hierarchical clustering (AHC). VBx further
refines these speaker labels. The approach is based on a Bayesian
hidden Markov model (HMM), where states correspond to speakers,
and transitions correspond to speaker turns. Speaker-specific distri-
butions are derived from a two-covariance probabilistic linear dis-
criminant analysis (PLDA) model [14], pre-trained on a large num-
ber of speaker-labeled x-vectors. The model uses variational Bayes
(VB) inference [15] to obtain the speaker distributions and the re-
fined speaker labels.

Being a clustering-based method, different approaches and ob-
jectives are used to train different parts of the model: the x-vector ex-
tractor is trained discriminatively with a speaker classification objec-
tive; the PLDA is trained generatively to maximize the likelihood of

its training set, and VBx hyperparameters are selected by grid search
to optimize diarization performance. Alternatively, end-to-end sys-
tems present a single neural model trained discriminatively for di-
arization but they require large amounts of (speaker-labeled) conver-
sational speech data, which are scarce. Thus, artificially simulated
training sets are built. However, they hinder system performance and
are a field of research on its own [16, 17]. On the contrary, while the
independent training of models used in clustering-based methods is
seen as a downside, it allows for the usage of large amounts of real
(single) speaker data to build robust speaker-discriminant models.

In the context of speaker recognition, discriminative training has
been previously applied to generative models. In [18], a PLDA-
like functional was proposed for evaluating the speaker verification
scores, and its parameters were discriminatively trained using an ob-
jective function that directly addressed the speaker verification task,
providing significant performance gains. In [19], an i-vector classi-
fier was discriminatively trained using maximum mutual information
to directly optimize the multi-class calibration criterion, to remove
the need of using later a calibration backend.

In this paper, we propose a discriminative training framework
for VBx (DVBx). With DVBx, all stages and parameters of the di-
arization pipeline can be jointly fine-tuned in an end-to-end fash-
ion to minimize the diarization error directly. Compared to standard
EEND approaches, which are usually trained from scratch on simu-
lated speaker conversations, VBx uses an x-vector extractor trained
on a large number of real speaker utterances [2], and a PLDA model
trained on a large number of such x-vectors. These components pro-
vide the model with a strong speaker discriminative power and serve
as a well-founded starting point for DVBx fine-tuning.

While we envision DVBx as a method capable of state-of-the-art
results, the main focus of this paper is to introduce the methodology
and present fair comparisons with the well-established original VBx.
It is out of the scope of this paper to compare to current state-of-the-
art approaches, which would require the use of VAD and overlap de-
tection, and which are not used in the current work. In later sections,
we will outline how we plan to extend the approach in directions that
will produce results on par with end-to-end models.

To prove the validity of the method, we present a set of ex-
periments that automatically find the set of VBx hyperparameters.
Their tuning is usually done by an extensive, time-consuming grid
search. Moreover, one cannot search through all possible combina-
tions and has to restrict the parameter search space to a finite pre-
defined set of values, which may lead to finding a suboptimal solu-
tion. We show that by automatically optimizing the hyperparame-
ters only, we can find a setting achieving comparable performance
to the baseline VBx model with parameters found by grid search [2]
on three real datasets: AMI, CALLHOME, and DIHARD II. More-
over, we show that the performance can improve even further by
fine-tuning the PLDA parameters. All our code is publicly available
https://github.com/BUTSpeechFIT/DVBx.
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2. MODEL DESCRIPTION

In this section, we briefly describe the necessary parts of the VBx
model closely related to our work and refer the reader to the original
VBx publication [2] for more details and the full description of the
VB inference, the derivation of the update formulae or the definition
of the hyperparameters.

VBx uses a Bayesian HMM to model the sequence of d-
dimensional x-vectors X̂ = (x̂1, x̂2, ..., x̂T )

⊤ ∈ RT×d represent-
ing T consecutive short speech segments in an input conversation.
To solve the diarization task, we need to infer the sequence of HMM
latent variables Z = (z1, z2, ..., zT )

⊤ ∈ NT representing the hard
assignment of x-vectors to the HMM states, where each HMM state
corresponds to one speaker in the conversation. The state transition
probabilities are modeled as

p(zt = s|zt−1 = s′) = (1− Pl)πs + δ(s = s′)Pl, (1)

where δ refers to the Kronecker delta function, Pl is the probability
of staying in the same state, and πs is the probability of switch-
ing to state/speaker s. The HMM state distributions (i.e., distri-
butions of the x-vectors corresponding to each speaker) are Gaus-
sian with specific mean and shared within-speaker covariance ma-
trix Σw. VBx uses a Bayesian setting where the speaker means
are latent variables with Gaussian prior with global mean m and
between-speaker covariance Σb. The parameters m, Σb, and Σw

are taken from a pre-trained PLDA model. For mathematical conve-
nience, we first center the original x-vectors around the global mean
m and transform them by LDA-like linear transformation E to ob-
tain x-vectors X = (X̂ − 1m)E with zero global mean, diagonal
between-speaker covariance matrix Φ and identity within-speaker
covariance matrix. The matrices E and Φ can be obtained by solv-
ing the generalized eigenvalue problem ΣbE = ΣwEΦ. For the
transformed x-vectors, the HMM state distributions are

p(xt|zt = s) = N (xt;Vys, I), (2)

where V = Φ
1
2 and ys is the state/speaker specific latent variable

with standard normal prior.
For each input conversation, VBx uses VB inference [15] to it-

eratively update the approximate posterior distributions q(ys), re-
sponsibilities γts = q(zt = s) and the speaker priors πs. After
convergence, the responsibilities γts represent the (probabilistic) as-
signment of x-vectors to HMM states/speakers and therefore provide
the solution to the diarization problem.

The approximate posteriors q(ys) = N (ys;αs,L
−1
s ) are up-

dated as:

αs =
FA

FB
L−1

s

∑
t

γtsV
⊤xt, Ls = I+

FA

FB

(∑
t

γts

)
Φ, (3)

where FA and FB are model hyperparameters (described be-
low). The responsibilities γts are updated using the standard
(non-Bayesian) HMM forward-backward algorithm, except that
the usual HMM state log-likelihood log p(xt|zt) is replaced by a
more complex term accounting for the uncertainty encoded in q(ys):

log p(xt|zt) ∝ FA

[
α⊤

s Vxt −
1

2
Tr(Φ[L−1

s +αsα
⊤
s ])

]
. (4)

Maximum likelihood type II updates are used for πs (see equation
(24) in [2]).

Scalars FA, FB are model hyperparameters that were intro-
duced to control the VB inference. The acoustic scaling factor FA

counteracts the independence assumption between observations.
The speaker regularization coefficient FB can be used to control
the number of output speakers (a high FB results in keeping fewer
speakers).

The responsibilities γts for the first VB iteration are typically
initialized from labels obtained by preceding AHC. Let γ̂t be a one-
hot vector encoding the hard assignment of a speaker label to x-
vector xt as provided by AHC. Rather than using elements of such
vectors directly as the initial responsibilities, we apply label smooth-
ing:

γt = softmax(τ · γ̂t), (5)
where a lower value of hyperparameter τ makes the initial assign-
ment of x-vectors to speakers more uncertain.

3. DISCRIMINATIVE TRAINING

Many diarization datasets have training and/or development data that
can be used for tuning parameters. Conventional VBx uses an al-
ready trained (and fixed) x-vector extractor and PLDA model, and
such data are only used to tune its hyperparameters. In contrast,
DVBx can utilize the same data to train all VBx parameters dis-
criminatively. It is possible because VB update equations involve
mathematical operations through which we can backpropagate loss
gradients w.r.t model parameters, and the iterative VB inference can
be unfolded, similarly to recurrent neural networks. In this section,
we describe the details of the DVBx setup.

3.1. Losses

Similar to many end-to-end diarization approaches [3, 4], the model
is optimized using permutation invariant training (PIT) scheme [20]:

L =
1

TS
min

ϕ∈perm(S)

T∑
t=1

H(γϕ
t , l̂t), (6)

where perm(S) is the set of all permutations of sequence (1, 2,
. . . , S), γϕ

t = (γϕ
t1, γ

ϕ
t2, . . . , γ

ϕ
tS)

⊤ ∈ ⟨0, 1⟩S represents the per-
muted responsibilities predicted by the VBx model for t-th frame,
and l̂t = (l̂t1, l̂t2, . . . , l̂tS)

⊤ ∈ {0, 1}S are the ground truth labels
indicating speaker activities of all S speaker in the t-th frame. For
the loss function H , we first considered binary cross entropy (BCE)
as normally used for end-to-end diarization system training:

HB(γ
ϕ
t , l̂t) =

S∑
s=1

−l̂tslog(γ
ϕ
ts)− (1− l̂ts)log(1− γϕ

ts). (7)

However, VB inference is known to underestimate latent vari-
able uncertainty, which leads to overly confident (close to either 0
or 1) responsibilities γts. Consequently, the BCE loss becomes very
high, as it heavily penalizes confident errors. Overconfidence can ad-
versely affect the performance of DVBx, as the loss primarily drives
parameter updates to mitigate overconfidence rather than improving
diarization performance. To compensate for such behavior, we op-
tionally calibrate the responsibilities by passing them through the
same function as Eq. (5) right before calculating the loss. The corre-
sponding parameter τcalib is also trained to “please” the BCE loss.

Despite BCE being the standard loss for training diarization sys-
tems [21], it does not directly correlate with the diarization error rate
(DER) (see Section 5). Therefore, we propose expected detection
error loss (EDE):

HE(γ
ϕ
t , l̂t) =

S∑
s=1

(1− γϕ
ts)l̂ts + γϕ

ts(1− l̂ts), (8)
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which calculates expected miss, if l̂ts = 1, and expected false alarm,
if l̂ts = 0. The main difference between EDE and the DER metric
is that EDE operates with probabilities rather than hard decisions,
and it double-counts speaker confusion frames, as confusion can be
viewed as both a miss and a false alarm from the perspective of dif-
ferent speakers. Note that EDE is not as sensitive to overconfident
responsibilities as BCE; hence, it does not require calibration. How-
ever, if also calibrated by Eq. (5), the larger the positive calibration
constant τcalib, the closer the EDE is to (hard) detection error due to
over-saturated responsibilities.

3.2. Backpropagation through VB Iterations

The straightforward way to backpropagate through VBx is to run VB
inference for a predefined number of iterations, obtain the refined
speaker labels after the last iteration, compute the loss, and back-
propagate the gradients. However, this leads to vanishing gradients
when using a high number of VB iterations.

As a solution, we compute the loss of Eq. (6) using the respon-
sibilities after each VB iteration and average them to obtain the fi-
nal loss value. It is mathematically equal to averaging the gradients
across the VB iterations, which speeds up the model convergence
due to easier gradient propagation.

3.3. Parameters

The following VBx parameters were considered for fine-tuning in
this publication. In some cases, re-parametrizations were used to
ensure they remain valid. FA and FB are trained directly. To ensure
Pl is a valid probability, we optimize logit(Pl) and apply sigmoid
afterward. To ensure positive τ , we train log(τ) (the same for τcalib).
Regarding PLDA parameters, the transformation matrix E is trained
directly, and for the diagonal covariance matrix Φ, we train the log
of the diagonal.

4. EXPERIMENTAL SETUP

4.1. Data

The proposed discriminative training does not require large amounts
of training data, as only a few scalars are optimized, and the PLDA
model is generatively pre-trained, so the discriminative training only
fine-tunes its parameters.

To evaluate the method’s performance, we use three datasets:
DIHARDII [22], CALLHOME [23], and AMI Beamformed [24].
DIHARD II (DH) comes with a pre-defined split into two parts: de-
velopment and testing. The development part is further split into two
equal-sized speaker-disjoint (if possible) parts for training (8 hours)
and validation (10 hours). For CALLHOME (CH), we use the well-
adopted split1 into two partitions: part1, part2, containing 249 and
250 files respectively. We further split part1 into two subsets: train
(127 files - 4 hours) and validation (122 files - 3.5 hours), such that
each part contains approximately the same number of files per each
number of speakers (2-7). Lastly, we use the Full-corpus-ASR par-
tition [2] (train set 65 hours, dev set 7.5 hours) in the case of AMI.

4.1.1. Labels

Like most standard clustering-based methods, VBx does not han-
dle overlaps. Therefore, designing the ground truth (GT) labels of
the overlap segments for discriminative training is not straightfor-
ward. First, we considered assigning each x-vector the GT label of

1https://github.com/BUTSpeechFIT/CALLHOME sublists

the dominant speaker in the segment, as this is what the VBx system
can estimate in the optimal case. Next, we considered the GT labels
containing the values p ∈ ⟨0, 1⟩ representing the proportion of each
speaker’s speech to the total amount of speech in the segment. In
our preliminary experiments, the latter approach outperformed the
former one in multiple training settings, so we decided to use it for
the experiments presented in this paper.

4.2. Model

The model takes b (batch size) pre-extracted x-vector sequences, ex-
tracted by ResNet101 [25, 26], from b utterances and processes them
in parallel. Each concurrent instance runs VBx on a single utterance
(i.e., we do not require equal-length utterances in a single batch) and
computes the gradients w.r.t. the trainable parameters. Subsequently,
gradients from parallel instances are averaged, and the trainable pa-
rameters are updated accordingly.

4.2.1. Training Setup

We experimented with two training strategies: a) training the hyper-
parameters (FA, FB , τ, Pl) and then PLDA with hyperparameters
fixed, and b) joint training of all parameters. If all are jointly trained,
as PLDA has orders of magnitude more parameters than the number
of hyperparameters, PLDA fine-tuning quickly decreases the loss but
prevents hyperparameters from reaching optimal values. Therefore,
we use the two-stage training strategy.

At the beginning of the inference, FA and FB are set to their
theoretically correct value of 1. Furthermore, τcalib default value is
also set to 1. Since there are no theoretically correct values for Pl

and τ , we considered several initial values, all of which had almost
no effect on the model performance. Therefore, we set their values
to the ones selected for the original VBx [2].

VB inference is run for 10 iterations. We set b = 8 and train the
model for 500 epochs with Adam optimizer [27].

In the VBx model, the trainable parameters have different dy-
namic ranges, and small changes in some of them have a strong
impact on performance. This could be easily observed as gradi-
ents w.r.t. FA were much higher than w.r.t. other hyperparameters.
Therefore, our model required searching for suitable learning rates
(LR) for the different parameters. LR was set to 5e−4 for FA and to
1e−2 for the rest of the hyperparameters. For PLDA matrices with
many more trainable parameters, the LR was set to 1e−3.

Experiments showed that Pl converged to 0 independently of
its initial value. Moreover, we observed that training with Pl = 0
throughout the whole training process did not significantly decrease
the model performance. Therefore, we set Pl = 0 in all DVBx
experiments. This further simplifies the inference, as the HMM be-
comes a Gaussian mixture model (GMM) (see Eq. 1). Moreover,
training GMM VBx on longer utterances requires significantly less
memory and is several times faster than HMM VBx.

During the two-stage training, we first select the best model after
the hyperparameters training according to the best validation DER.
Then, we train the PLDA parameters with hyperparameters being
fixed and provide results based on the best validation DER score.

4.3. Baseline

As a first baseline, we selected the original VBx model [2], as this
work directly extends it. Its hyperparameters FA, FB , and Pl were
estimated using grid search separately for each dataset to minimize
DER on the development set. Label smoothing, however, was hand-
tuned to τ = 7 and remained constant for all datasets.
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Fig. 1. BCE and EDE behavior throughout 500 epochs on the CH
train set.

As the HMM is simplified to a GMM in DVBx, we also include
GMM VBx as a baseline. To obtain optimal results for this baseline,
we re-ran the grid search for FA, FB .

4.4. Evaluation

We use oracle VAD (during training and evaluation) and 40 VB it-
erations with stopping criterion (i.e., stop VB if the evidence lower
bound [15] stops increasing). The models are evaluated using DER
implemented in pyannote [28] with the standard collar=0.0 s for AMI
and DH and collar=0.25 s for CH.

5. RESULTS

5.1. Hyperparameters Fine-tuning

Table 1 presents the main experimental results. It first shows the
performance of the baselines and their corresponding hyperparame-
ter values. Secondly, it shows the results of hyperparameter training
experiments comparing the three losses: BCE, BCE with calibration
(BCE+calib.), and EDE.

As mentioned earlier, BCE optimization and DER performance
do not correlate well, which is illustrated in Fig. 1. BCE requires us-
ing a validation s et for early stopping, as parameters would eventu-
ally diverge, significantly harming the performance. Moreover, sub-
stantially lower FA, FB values are achieved by BCE because it tries
to compensate for the overconfident responsibilities. BCE+calib.
solves this issue but performs worse than both BCE and EDE. The
proposed EDE not only provides reasonable hyperparameter values
but converges faster than BCE (see Fig. 1) and achieves compara-
ble or better DER in all datasets. Hence, further comparisons are
conducted on models trained with EDE.

Furthermore, Table 1 shows that DVBx with EDE outperforms
the GMM VBx baseline on all datasets while achieving comparable
performance with the original HMM VBx baseline, which proves
that DVBx can be used to successfully tune hyperparameters. It also
shows that the GMM simplification does not harm the model perfor-
mance much.

5.2. PLDA Fine-tuning

PLDA fine-tuning experiments are shown in Table 2. It first presents
the following systems: a) GMM VBx baseline, b) discriminatively
trained hyperparameters, c) fine-tuned PLDA with fixed hyperpa-
rameters obtained in b). While the fine-tuning obtains comparable
performance to the baseline in DH and CH, for AMI, it yields an
absolute 2.61% DER improvement w.r.t. the GMM VBx baseline
and 1.92% DER improvement w.r.t. DVBx hyperparameters train-
ing. We hypothesize that, in AMI, DVBx can leverage the larger
development set to fix the mismatch between the pre-trained PLDA
and the target domain. Lastly, for the sake of completeness, we also
tested PLDA FT using the GMM VBx baseline parameters, where a
similar behavior was observed.

Table 1. DERs (%) using three losses: BCE, BCE with calibration,
EDE on datasets: AMI, CH, DH. The first two rows in each dataset
section display the baseline results.

Data System τ FA FB DER

DH

HMM VBx [2] 7.00 0.20 6.00 18.55
GMM VBx 7.00 0.20 5.00 18.93

DVBx - BCE 2.90 0.25 4.38 18.98
DVBx - BCE+calib. 12.88 0.43 10.14 18.84
DVBx - EDE 9.62 0.33 9.64 18.76

CH

HMM VBx [2] 7.00 0.40 17.00 13.53
GMM VBx 7.00 0.30 13.00 13.63

DVBx - BCE 0.97 0.08 1.39 13.53
DVBx - BCE+calib. 1.93 0.51 11.16 14.52
DVBx - EDE 12.40 0.26 9.47 13.48

AMI

HMM VBx [2] 7.00 0.40 64.00 20.84
GMM VBx 7.00 0.50 63.00 21.49

DVBx - BCE 12.35 0.12 8.89 21.06
DVBx - BCE+calib. 15.10 0.21 13.90 21.72
DVBx - EDE 3.48 0.25 25.31 20.91

Table 2. DERs (%) of PLDA fine-tuning (FT).

System DH CH AMI

a) GMM VBx 18.93 13.63 21.49
b) DVBx trained FA, FB , τ 18.76 13.48 20.91
c) b) + PLDA FT 18.66 13.38 18.99

d) a) + PLDA FT 18.93 13.63 18.88

6. CONCLUSION

In this work, we introduced a new principled way of tuning the VBx
model hyperparameters without the need for running an extensive
grid search requiring an understanding of hyperparameter sensitivity.
To successfully do so, we introduced a new loss, EDE, that better
correlates with the DER metric than the standard BCE loss. We want
to highlight that while we used EDE only in the context of DVBx,
its usage can be extended to EEND system training. Furthermore,
we showed that we can further improve the model performance by
fine-tuning the PLDA parameters. The presented work is the first
step towards building a robust DVBx, combining the capabilities of
a principled model with discriminative training. In future work, we
plan to backpropagate gradients to the x-vector extractor to fine-tune
together the whole diarization pipeline. Moreover, we would like
to couple this method with the recently proposed well-performing
MS-VBx [6], allowing the model to handle overlaps.
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trained probabilistic linear discriminant analysis for speaker
verification,” in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). IEEE, 2011, pp.
4832–4835.

[19] Alan McCree, “Multiclass discriminative training of i-vector
language recognition,” The Speaker and Language Recogni-
tion Workshop (Odyssey 2014), 2014.

[20] Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen,
“Permutation invariant training of deep models for speaker-
independent multi-talker speech separation,” in 2017 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2017, pp. 241–245.

[21] Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Kenji Naga-
matsu, and Shinji Watanabe, “End-to-End Neural Speaker Di-
arization with Permutation-Free Objectives,” in Proc. Inter-
speech 2019, 2019, pp. 4300–4304.

[22] N. Ryant et. al., “The Second DIHARD Diarization Challenge:
Dataset, task, and baselines.,” in Proceedings of Interspeech,
2019.

[23] A. F. Martin and M. A. Przybocki, “Speaker recognition in a
multi-speaker environment,” in 7th European Conference on
Speech Communication and Technology, Eurospeech, Septem-
ber 2001, vol. 7, num. 2, pp. 787–790.

[24] Jean Carletta, Simone Ashby, Sebastien Bourban, Mike Flynn,
Mael Guillemot, Thomas Hain, Jaroslav Kadlec, Vasilis
Karaiskos, Wessel Kraaij, Melissa Kronenthal, et al., “The
AMI meeting corpus: A pre-announcement,” in International
workshop on machine learning for multimodal interaction.
Springer, 2006, pp. 28–39.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[26] Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel Matějka,
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