
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DEEP NEURAL NETWORKS USED FOR CUSTOMERSUPPORT CASES ANALYSIS
ZPRACOVÁNÍ ZÁKAZNICKÝCH POŽADAVKŮ ZA POUŽITÍ HLUBOKÝCH NEURONOVÝCH SÍTÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. MAREK MARUŠIC
AUTOR PRÁCE
SUPERVISOR Ing. JAN PLUSKAL
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
Artificial intelligence is remarkably popular these days. It can be used to resolve various

highly complex tasks in fields such as image processing, sound processing, natural language
processing, etc. Red Hat has an extensive database of resolved support cases. Therefore
an idea was proposed to use these data for data mining and information retrieval in order
to ease a resolution process of the support cases. In this work, various deep neural network
models were created for prediction of features which could help during the resolution pro-
cess. Techniques and models used in this work are described as well as their performance
in the specific tasks. Comparison of individual models is outlined as well.

Abstrakt
Umelá inteligencia je pozoruhodne populárna v dnešnej dobe, pretože si dokáže poradiť

s rôznymi veľmi komplexnými úlohami v odvetviach ako napr. spracovanie obrazu, spra-
covanie zvuku, spracovanie prirodzeného jazyka a podobne. Keďže Red Hat doteraz už
vyriešil obrovksé množstvo zákazníckych požiadavkov počas podpory rôznych produktov.
Preto bola navrhnutá myšlienka použiť umelú inteligenciu práve na tieto dáta a docieliť tak
zlepšenie a zrýchlenie procesu riešenia zákaznícky požiadavkov. V tejto práci sú popísané
použité techniky na spracovanie týchto dát a úlohy, ktoré je možné riešiť pomocou hlbokých
neurónových sietí. Taktiež sú v tejto práci popísane rôzne modely, ktoré boli vytvorené
počas riešenia tejto práce a snažia sa adresovať rôzne úlohy. Ich výkony sú porovnané na
spomínaných úlohách.

Keywords
Red Hat, Podpora, Zákazník, Hlboké učenie, Prirodzený jazyk, Spracovanie Prirodzeného
Jazyka, Neurónové Siete, Neurón, Získavanie Znalostí z dát

Klíčová slova
Red Hat, Support, Customer, Deep Learning, Natural Language, Neural Networks, Neuron,
Text Processing, Data Mining

Reference
MARUŠIC, Marek. Deep Neural Networks Used for Customer Support Cases Analysis.
Brno, 2018. Master’s thesis. Brno University of Technology, Faculty of Information Tech-
nology. Supervisor Ing. Jan Pluskal

Rozšířený abstrakt
V súčasnej dobe je umelá inteligencia veľmi rozšírená a populárna. Pomocou umelej in-

teligencie je možné vyriešiť rôzne veľmi komplexné úlohy. Obrovský pokrok v umelej in-
teligencii bolo možné vidieť keď AlphaGo1 vyhralo veľmi komplexnú a náročnú hru Go nad
legendárnym hráčom Lee Sedol, ktorý vyhral 18 svetových titulov a je považovaný za na-
jlepšieho hráča posledného desaťročia [4]. Umelá inteligencia je používaná na rôzne úlohy
ako napr. spracovanie obrazu, zvuku alebo textu. Nedávne pokroky v umelej inteligencií sú
veľmi veľké hlavne v oblasti hlbokého učenia. Preto bola navrhnutá veľmi zaujímavá idea
vyžiť hlboké učenie a hlboké neurónové siete za účelom uľahčenia niektorých úloh, ktoré
musia robiť zamestnanci vo firme Red Hat.

Táto práca využíva dáta zo systému zákazníckej podpory za účelom preskúmania
možných vylepšení procesu, ktorý je vykonávaný pri riešení problémov zákazníkov firmy
Red Hat. Systém zákazníckej podpory obsahuje množstvo problémov, na ktoré zákazníci
narazili počas používania rôznych produktov. Každý takýto problém je zaznamenaný zvlášť
vo vlastnom zákazníckom požiadavku, ktorý obsahuje informácie o danom probléme ako
napr. popis problému, kto problém nahlásil, kto na tomto probléme pracuj atď. Takýchto
problémov bolo zaznamenané veľké množstvo. Red Hat ponúka podporu pre mnoho rôznych
produktov s rôznymi verziami, preto je veľmi náročné prideliť zamestnanca, ktorý by sa
najviac hodí na riešenie daného problému.

V súčastnosti existuje klasifikátor, ktorý rozdelí použivateľské problémy do rôznych tried
na základe toho aké informácie obsahujú. Triedy reprezentujú určité odvetvie zručností,
ktoré zamestnanci v danej skupine ovládajú. Z takýchto tried si potom zamestnanci vy-
berajú vhodné problémy, ktoré budú riešiť. Avšak, tieto triedy obsahujú priemerne až 40
zamestnancov. Preto sa táto práca zameriava na preskúmanie možností, ktoré by viedli ku
zníženiu počtu ľudí, ktorý si musia prečítať užívateľské požiadavky, ktoré pre nich nie sú
relevantné čo by malo zvýšiť rýchlosť pri riešení problémov zákazníkov. Takéto možnosti
sú napr. klasifikácia zákazníckeho záznamu konkrétnemu zamestnancovi. Navyše sa táto
práca zameriava na vylepšenie a optimalizáciu už existujúceho spomínaného riešenia.

Čitateľ sa môže dozvedieť v kapitole 2 ako funguje podpora rôznych produktov, ktorá je
ponúkaná firmou Red Hat. Navyše, je možné sa tu dozvedieť ako vyzerá záznam zákazníck-
eho problému, aké atribúty záznam obsahuje a tak isto motiváciu tejto práce. Jeden z
najdôležitejších atribútov je popis problému. Popis môže byť zapísaný v rôznych jazykoch,
avšak najväčšia časť záznamov je písaná v Anglickom jazyku a preto v tejto práci sú použité
práve záznamy v Anglickom jazyku. V ďalšej kapitole 3 je možné sa dočítať o moderných
postupoch pri spracovaní textu a algoritmoch hlbokého učenia, ktoré boli použité v tejto
práci.

Návrh a realizácia riešenia sú popísané v kapitole 4. Riešenie sa skladá z niekoľkých častí.
Príprava a pred spracovanie dát pre neurónové siete, pripravené modely, ktoré využívajú
hlboké učenie a v neposlednej rade programy na vyhodnotenie výsledkov na testovacej
dátovej sade.

Počas prípravy dát je nutné zakódovať textové dáta do číselných vektorov. V súčasnej
dobe existuje viacero veľmi dobrých spôsobov pre toto kódovanie ako napr. Word2Vec,
GloVe alebo FastText. Keďže každý z nich môže mať lepšie výsledky na iných úlohách boli
spomínané spôsoby vyskúšané a porovnané na úlohách riešených v tejto práci. Popísané sú
modely, ktoré dosahovali najlepšie výsledky. Tieto modely sa skladajú z rôznych kombinácií
rôznych vrstiev neurónových sietí.

1https://deepmind.com/research/alphago/

S vytvorenými modelmi boli vykonané rôzne experimenty, ktoré sú popísané v kapitole 5.
Najskôr je porovnaný existujúci SBR klasifikátor, ktorý používa kombináciu rekurentnej
konvolučnej siete (RCNN) s komplementárnym naive bayes (CNB) a dosiahol presnosť
82.21%. Model je porovnaný s novo vytvoreným SBR klasifikátorom, ktorý používa kom-
bináciu CNB, konvolučnú sieť (CNN) a sieť s dlhou a krátkodobou pamäťou (LSTM), a
dosiahol presnosť 81.76%. Presnosť nového modelu je veľmi podobná, avšak čas potrebný
na jeho trénovanie a validáciu je viac ako 13 krát menší ako pri existujúcom riešení. Navyše
tieto modely boli použité pri porovnaní efektu rôznych algoritmov použitých pre zakó-
dovanie textu do vektorov. Experimenty ukázali, že v tomto prípade mal najlepšie výsledky
Word2Vec algoritmus.

V ďalšej časti boli vykonané experimenty s modelmi pre priradenie zamestnanca ku
záznamu zakazníckeho problému. Najvyššiu presnosť dosiahol model RCNN s presnosťou
14.55%. Avšak, model vytvorený z kombinácie CNN a LSTM mal velmi podobnú úspešnosť
14.05% a zároveň jeho tréning bol niekoľko násobne rýchlejší. Navyše všetky modely,
s ktorými boli vykonávané experimenty, niekoľko násobne prekonávajú základný model
vytvorený a popísaný v tejto práci.

Taktiež boli vykonané experimenty s top k najviac hodiacich sa zamestnancov k danému
zákaznickemu záznamu. Hodnota k bola nastavená od 5 až do 40 po kroku s veľkosťou 5.
Najlepšie výsledky pri hodnote k 40 dosahovala kombinácia CNN a LSTM a to 87.78%.
Takto sa podarilo prekonať základný model vytvorený a popísaný v tejto práci.

5

Deep Neural Networks Used for Customer Sup-
port Cases Analysis

Declaration
Hereby I declare that this Master’s thesis was prepared as an original author’s work under
the supervision of Ing. Jan Pluskal and consultants Ing. Matěj Habrnál and Michael A.
Alcorn, M.S. All the relevant information sources, which were used during preparation of
this thesis, are properly cited and included in the list of references.

. .
Marek Marušic

May 22, 2018

Acknowledgements
I would first like to thank my supervisor Ing. Jan Pluskal and my consultants Ing. Matěj

Habrnál and Michael A. Alcorn, M.S. for leading my Master’s thesis and for their priceless
advice.

I would like to express my very profound gratitude to my family and to my girlfriend for
providing me with unfailing support and continuous encouragement throughout my years of
study and through the process of researching and writing this thesis. This accomplishment
would not have been possible without them. Thank you.

Contents

1 Introduction 3

2 Red Hat’s Support 5

2.1 Support case . 6
2.2 Motivation . 8

3 Natural language processing and artificial neural networks 9

3.1 Natural language processing . 9
3.2 Deep learning . 9
3.3 Deep neural network . 10
3.4 Artificial neural network . 10
3.5 Convolutional neural network . 11
3.6 Recurrent neural network . 12
3.7 Recurrent convolutional neural network . 13
3.8 Word representation methods . 13
3.9 Word embedding . 14

3.9.1 Embedding layer . 15
3.9.2 Word2Vec . 15
3.9.3 Global vectors for word representation 16
3.9.4 FastText . 17

4 Application design and Implementation 18

4.1 Customer case features for classification . 18
4.1.1 Existing solution . 18
4.1.2 Enhancement of the existing solution 19
4.1.3 Owner classification of the customer support cases 19

4.2 Data structure . 20
4.3 Data preparation . 20

4.3.1 Implementation of the data preparation 21
4.3.2 Comparison of new data preparation with existing solution 23

4.4 Creation of word embeddings . 24
4.4.1 Word2Vec . 24
4.4.2 GloVe . 24
4.4.3 FastText . 25

4.5 Creation and training of models . 25
4.6 Evaluation of models . 26

1

5 Experimentation with the application 27

5.1 SBR classification . 28
5.2 Performance comparison of word embedding models 30
5.3 Owners classification . 30

5.3.1 Baseline for owners classification . 31
5.3.2 Specific owner classification . 31
5.3.3 Top k owners . 34
5.3.4 Effect of different data class sizes on the owner classification 35
5.3.5 Further observations and experiments 38
5.3.6 Future plans . 38

6 Conclusion 39

Bibliography 41

A Manual 44

2

Chapter 1

Introduction

Artificial intelligence (AI) is remarkably popular these days. It can be used to resolve
highly complex tasks. A significant milestone was achieved when an AlphaGo1 won in an
extremely complex game called Go over legendary player Mr. Lee Sedol, winner of 18 world
titles and widely considered to be the greatest player of the past decade [4]. However, the
AI can be used for variety of fields such as image processing, sound processing, natural
language processing (NLP), etc. It can classify data into desired categories, cluster data
based on its features into categories, etc. Since recent advantages in AI especially in deep
learning, it seemed that it could be very interesting to apply this knowledge to ease some
tasks engineers at Red Hat do.

An interesting idea was proposed by Red Hat engineers to use deep neural network
(DNN) to predict some features of open customer support cases. There is a significant
number of resolved support cases, which can be used for data mining and information
retrieval in order to ease a resolution process of the support case. This work will try to
create DNN models for prediction of features which could help during the resolution process.

Red Hat’s support and a support case will be described in Chapter 2. Moreover, avail-
able data set is going to be outlined such as the attributes of the support case and the
attributes of the technical support engineers. These are going to be examined and we will
choose the best and the most relevant attributes for our proposed tasks.

Chapter 3 will deal with the NLP and frequently used approaches in the modern NLP
such as deep learning, DNN and artificial neural network (ANN). These algorithms are
widely used in today’s AI as well. There will be pointed out how ANNs can be used in NLP
and in text processing. Furthermore, it will be explained how it is possible to represent
words by vectors in order to achieve better results of classifications. Specifically, the word
embedding algorithms are going to be used for this purpose and they will be described as
well in this chapter.

Following Chapter 4 is going to describe proposed design and implementation of the ap-
plication for our cause. Interesting and useful features for prediction will be examined along
with an existing solution for simplification of the customer case resolution process. More-
over, enhancements and different approaches are proposed which are used in experiments
in order to explore the possibilities of the simplification of the customer case resolution
process. It is possible to read about the actual implementation of the proposed applica-
tion such as implementation of the data procession, data preparation and evaluation of the
models.

1https://deepmind.com/research/alphago/

3

Experiments with actual models and their evaluations are going to be described in the
Chapter 5 which is divided into several parts describing various experiments. Firstly we will
experiment with existing solution and we will try to enhance it and optimize it. Moreover,
this part contains different models proposed for the existing solution. In the next part
we will explore different algorithms for encoding text data and their effect on the models
mentioned above. Experiments with specific owner and top k owners classifications of the
support cases are going to be conducted in the next two parts along with exploration the
effects of different sizes and counts of the data classes.

4

Chapter 2

Red Hat’s Support

Red Hat knows that a community is stronger than an individual which means that a single
person rarely comes with the best idea whereas many people can often construct a better
solution to a problem. Therefore, the Red Hat’s support is different than regular support
services which are very well described in the following quote from a Red Hat’s blog.

Most of us have encountered a moment of frustration when using personal tech-
nology a forgotten password, or unresponsive screen on a smartphone, or per-
haps you have had an ongoing issue with your internet service provider or your
bank. Once you have tracked down the support number and dialed in, many
times, here is what happens:

∙ A really nice, well-intentioned representative of the company answers your
call and asks you to describe the issue.

∙ Their questions are likely based on a flowchart-like decision tree that acts
as a script to identify the most common issues with the product you are
using.

∙ This works well if your issue is on the list, but if it is not, that is when
you start using stronger language, asking your own questions and become
a bold advocate for yourself hoping to get escalated to Tier 2 Support.

∙ Reaching Tier 2 might seem like a minor victory in getting the help you
need, but often it starts out just like in Tier 1. You describe the issue again,
answer questions (albeit from a more experienced support representative)
and at this moment you feel like you have started all over again.

∙ While you are waiting on and off of hold for various resources, you start
clicking around through the self-help section of the company’s website only
to find descriptions of your issue paired with a recommendation to call
support![6]

The support engineers are trained to understand the product, and then deep dive into
one of the many dozens of technologies that bring these products to life. This way the
support engineers earn credibility in their domain very fast. They learn what resources are
available to them for collaboration during troubleshooting problems with cross-functional
teams instead of learning a script.

Red Hat creates products with help and input from communities which can have thou-
sands of members upstream and downstream. This collaborative approach is used in Red

5

Hat’s support as well. Everyone within the specialty group has access to the issue and
works concurrently with their peers to make progress solving the customer support case[6].

Red Hat offers many products and technologies amongst many other services. Moreover,
Red Hat provides multiple versions of the products. One of the crucial things for these
products and their versions is support. Not only Red Hat provides support for its products,
but it also includes many levels of the support. Furthermore, it provides support for
various versions of the products. For most of the products, the support is offered from the
General Availability (GA) of the product until the end of the maintenance phase. However,
the support can be prolonged in case the customers are interested. It can be done by
acquiring an extended support subscription called Extended Lifecycle Support (ELS). Red
Hat has published a calendar 1 with life cycles of the support for the products which enables
customers to plan their usage of the products better. This calendar is updated by Red Hat
when needed with the newest information [1].

In order to be able to effectively and quickly resolve the issues customers encounter
during usage of Red Hat products, we use so-called Swarming Model for the support. In
other words, the best technical engineers from all across the world collaboratively work on
the support case to resolve it. Moreover, this way the support can be executed 24/7 by our
teams based on the purchased level of the support subscription and the issue severity. The
engineers exchange depending on their local time. In order to be able to provide this kind
of support, the customer cases have to be submitted in English to avoid time-consuming
translation of the communication between customers and our engineers. However, local
language support is available for standard customer cases (cases which do not require 24/7
support) as well. Furthermore, Red Hat development engineers often collaborate with the
technical support engineers as well when needed in order to speed up the resolution process
of the customer support case [3].

This enables the most appropriate engineers from different teams to collaborate on a
case, no matter where they may be worldwide so that the problems can be resolved more
efficiently. However, local language support is available in many regions. Depending on
the severity of the issue and the support level purchased, a 24x7 process is used with
transitions between teams located across the world. For these cases, English is the only
supported language.

Development engineers are frequently requested to work on the support cases to make
sure that the right resources are working on cases to speed resolution. If there are no active
tasks to accomplish during a collaborative support session Red Hat may disengage in order
to continue investigation internally. This provides the possibility to accelerate support by
directly engaging, reviewing and observing behavior on a customer’s system.

2.1 Support case
Customer support cases are documents in Red Hat’s cases management system which de-
scribe problems the customers encountered in Red Hat’s products. These cases can be filled
by Red Hat’s customers.

The customers can take advantage of a Collaborative Support offered by Red Hat which
enables Red Hat engineers and customer teams to collaborate in order to gather valuable
info about the issue and observe the bogus behavior of the customer’s system. When the
customer encounters multiple issues at once, they are asked to create separate support case

1https://access.redhat.com/support/policy/update_policies/

6

for the particular issue. This enables Red Hat to assign relevant resources to relevant issues
and it leads to faster resolution of the issue. The customers are asked to fill following fields
into the support case.

Title Short description of the issue in one sentence.

Product Version and product name where the issue occurred.

Severity Priority of the issue according to Red Hat Support Severity Level Definitions 2.
Selecting a higher severity when the problem does not meet the requirements may
lead to a severity renegotiation, which will slow down the support process.

Description Description of the problem such as explanation what happened. The observed
behavior (screen, console, etc.). Description of the environment (connectivity, storage,
etc.) whether there are any recent changes (for example software upgrade, hardware
changes, storage maintenance, etc.). Estimate of the date and time the event occurred.
Frequency how often is this issue occurring. Information about whether the customer
encountered a similar issue on his system or others in the past. Explanation how
the problem is affecting customer’s business (for example the central web server, mail
server, or just a secondary lab system, etc.)

Logs Depending on the product Red Hat often requests additional information such as
SOS reports or log files from every system or node in an environment, based on the
nature of customer’s issue. Having this information available in its entirely ensures
that Red Hat’s engineers can be focused on resolving issues, rather than spending this
critical time gathering data.

Customers are often required to answer additional questions from our engineers to speed
up the process of the resolution. On top of that, during the 24/7 support phase, customers
have to provide contact info for their team. The 24/7 flag can be lost if the customer’s
team does not update the support case accordingly. This kind of support cases have to be
submitted in English as mentioned in Chapter 2 since the issue will be worked on by teams
from all across the world.

Another critical thing is Red Hat’s Knowledge Base (KB)3. Its purpose is to gather
known issues and known resolutions for customers issues. Moreover, it contains various
documentation and hints for customers problems. The customers are able to search for
similar problems to those which they experience and they can find possible solutions for
them. The KB articles can provide crucial knowledge which can help to resolve the issue
even before the creation of the support case [3].

The customers should follow topics relevant to their systems using the document type
and product filters in the solutions section4. These documents can provide useful insights
for day to day systems administration.

Internal fields

Moreover, there is few hundreds internal fields for every support case. Therefore, the most
relevant fields have to be chosen carefully for the respective classifications. Here are some
of the important fields:

2https://access.redhat.com/support/policy/severity
3https://access.redhat.com/knowledgebase
4https://access.redhat.com/solutions

7

Owner The assigned engineer who is responsible for the support case.

Priority Internal representation of the priority of the support case.

Knowledge Base article This is a link to the related KB article.

Language The language used in the support case.

Currently, there are almost a million support cases in Red Hat’s system and more than
700 000 of them are in the English language. Therefore only the English support cases will
be used in this work. Other languages have not such a significant number of the support
cases.

2.2 Motivation
We already know that Red Hat supports various products with various versions from the
Chapter 2. We can observe that it is not easy to provide support for so many products and
versions. Not to mention it is not effortless to maintain a quality of the support service
and to maintain the speed of the issue resolution. During this process there are additional
fields filled (see Section 2.1) which are visible only for Red Hat employees such as the
owner of the issue. In other words, the person who is responsible for the issue. Another
internal attribute represents an area of the issue such as (Virtualization, Network Services,
OpenShift, etc.). This field is called SBR which stands for skills-based routing.

The support case is added to a new case queue of the specified area and the technical
support engineers can pick the issues based on their individual capacity. This means the
engineers have to read through the cases and evaluate them. Based on the evaluation they
either pick the issue or another engineer with more appropriate skills will choose the issue.

The goal of this work is to explore the possibilities how to simplify and ease the support
process in order to provide faster and even more superior support. Firstly the existing
solution for SBR classification is going to be explored and experiments are going to be done
with it. Moreover, this solution is going to be optimized by decreasing training and testing
time requirements as well as the memory footprint. In order to increase the accuracy of
the models, a different word embedding algorithms are going to be experimented with and
their influence on the performance is going to be examined.

Secondly, different approaches and possibilities to improve the support case resolution
process are going to be proposed, examined and experiments are going to be done with them.
These approaches include specific owners classification and top k owners classifications with
various values of the k. Moreover, this work is going to investigate the effects of different
minimal sizes of the data classes.

8

Chapter 3

Natural language processing and
artificial neural networks

3.1 Natural language processing
Human babies learn during their first years in this world few essential skill needed for the
rest of their lives. These skills include an ability to understand and to speak the human
language. Even though it is a fundamental skill, the human language is very complicated.
Not to mention that to understand a text or a speech it is required to understand and be
familiar with various concepts and how they are linked which often is a very tough task even
for a human being. Moreover, these concepts are often not located in the text or a speech
itself. In order to instruct the behavior of a computer we commonly use programming
languages. Furthermore, the programming languages contain straightforward and clear
instructions. However, the human language is often the opposite since it is often ambiguous
and unclear. Therefore a NLP has to be leveraged in order to enable the computers to
understand the human language in a written or a spoken form [22].

NLP is at the intersection of few sciences such as computer science, artificial intelligence
and computational linguistics [2]. NLP helps computers to understand and interpret the
human language. It considers a hierarchical structure of language, e.g. characters are con-
nected to words, words are connected to phrases, and they are connected to some concept or
idea [18]. Moreover, the NLP has various usages including machine translation, sentiment
analysis, speech recognition, grammar correction, text mining, information extraction and
retrieval and many more.

3.2 Deep learning
One of the best approaches in modern Artificial intelligence and machine learning scientific
disciplines is deep learning. Deep learning is a set of machine learning techniques leveraging
lots of layers of non-linear information processing for feature extraction and transformation
as well as for pattern analysis and classification.

Deep learning is a class of machine learning techniques, where many layers of
information processing stages in hierarchical supervised architectures are ex-
ploited for unsupervised feature learning and pattern analysis/classification.
The essence of deep learning is to compute hierarchical features or represen-
tations of the observational data, where the higher-level features or factors are

9

defined from lower-level ones. The family of deep learning methods has been
growing increasingly richer, encompassing those of neural networks, hierarchi-
cal probabilistic models, and a variety of unsupervised and supervised feature
learning algorithms [13].

Unlike in the standard machine learning techniques, we do not have to extract features
of the data by ourselves since the deep learning methods do the extraction of features by
themselves. The deep learning methods are becoming essential as a result of their success
in solving complex learning problems [22]. One of the deep learning technique is a DNN
which is an ANN with many layers. DNNs will be used in this work for text classification.
More about the DNN can be read in Section 3.3 which is dedicated to describing them. For
closer look into the ANN refer to Section 3.4.

3.3 Deep neural network
The difference between normal ANN and the DNN is in the depth of the network. The
earlier version of ANN was composed of one input layer, one output layer and at most one
hidden layer in between. Therefore, the ANN with more than three layers including the
input and output layers can be marked as DNN. The main benefit of the DNN is that it
finds and extracts features of the data without the need of human intervention, unlike most
of traditional machine learning algorithms.

3.4 Artificial neural network
The fundamental element of ANN is an artificial neuron (AN). Both the ANN and AN are
inspired by the biological ones in a brain. The ANs as well as the biological neurons process
some types of inputs and based on those inputs it transmits a result through its output
connections [19]. Most commonly the output of the AN is calculated by summing up the
weighted inputs. The calculated sum is then processed by a simple function. There is a
number of these simple functions available such as step functions, ramp functions, sigmoid
functions and more [24]. The structure of the AN can be observed in figure 3.1. Inputs 𝑥𝑖
are transmitted to the neuron by other neurons in the network through their connections.
Every input 𝑥𝑖 is multiplied by its weight 𝑤𝑖 and all of these sub-results are sum up. The
sum of all of them is processed by the simple function. The AN has the capability to solve
only linearly separable problems. Because of that, the ANs were not used extensively in
the past after their discovery. However, when they are connected to the ANN, they can
solve complex problems [14].

Figure 3.1: Artificial neuron [14]

10

ANs can be connected with others in various architectures of the ANN such as fully
connected networks, layered networks, acyclic networks and feed-forward networks. Every
architecture is suited to perform better in some types of problems and the other archi-
tectures can perform better on different kinds of issues. Adequately chosen architectures
can help to solve problems easier and faster. Because of this, the developers should choose
the architecture after determining the type of problem to be solved. ANN is able to solve
very complex problems after it is adequately learned. The learning is done by fine-tuning
the weights of neurons. There are three major learning paradigms supervised learning,
unsupervised learning and reinforcement learning [19].

3.5 Convolutional neural network
Convolutional neural networks (CNNs) were originally designed to solve problems in image
processing field. Such as an image classification etc. However, they perform very well in
solving NLP problems as well. The CNN is unique mainly because it utilizes convolutional
and pooling layers. Convolutional layers perform convolutions of the input and filters in
the concrete layer [22]. A filter (sometimes referenced as a kernel) is usually applied on
the input from the left upper corner of the image and then it is slid to the left by a stride
(which is an adjustable parameter), and it is applied again on the next part of the input.
The filters are applied to the input one by one. Zero padding (see Figure 3.2) on the edges is
often used to preserve input vector dimensions in the result. The result is then passed over
to the next layer. Another critical thing is the pooling layer. It performs average or max
operation on the input which results in a reduction of dimensions. There are more types
of layers used in CNN such as normalization layers and fully connected layers. Figure 3.3
shows a full example of a CNN called LeNet.

Figure 3.2: Application of a convolution with zero padding which preserves the original
dimensions [26]

11

Figure 3.3: Architecture of convolutional neural network LeNet-5 [21]

3.6 Recurrent neural network
Often the data consist of some types of sequences, e.g. a sentence or frames of video, etc.
In this situation, a recurrent neural network (RNN) model is convenient since they perform
very well at this type of problems. The unique thing in RNN is that the output of the
neuron from time step t is fed into the same neuron’s input in the next time step t+1 along
with the other inputs. This way the neuron maintains a small memory about its previous
states. Consequently, this means every computation depends on the previous results. We
can see the recurrent connection the neuron in Figure 3.4, as well as we can see how the
neuron would unfold through the time. The original vanilla RNNs suffer from a problem
called vanishing gradients which means that information about data vanishes very quickly
in the RNNs. In other words vanilla RNNs struggle with long-term dependencies. To that
end, another type of RNN called long short-term memorys (LSTMs) was designed. The
LSTMs do not suffer from such a quick vanishing gradients [9].

Figure 3.4: RNN unfold over the time [9]

Long short-term memory

LSTM is a special RNN specifically designed to address and avoid the long-term dependency
problem. Moreover, by default, they do remember information for long periods of time
without struggle. That is probably the reason why they are trendy and these days mainly
variations of LSTMs are more preferred than the vanilla RNN. The main difference from
vanilla RNN is the function for calculation of the hidden states in the neurons [9].

12

3.7 Recurrent convolutional neural network
The recurrent convolutional neural network (RCNN) is a method which aims to combine
the advantages of the RNN and the advantages of the CNN as well into one method. In
the paper [20] experiments were conducted on several data sets. The method outperforms
state-of-the-art methods on several datasets, particularly on document-level data sets. This
work proposes a deep learning model with the structure shown in Figure 3.5. The input of
the network is a document D, which is a sequence of words 𝑤1, 𝑤2..., 𝑤𝑛. The output of the
network contains class elements and the probability of the document being class k. It uses
a context vector which captures the semantics of all left-and right-side contexts.

The model first, applies a bi-directional recurrent structure, which may introduce con-
siderably less noise compared to a traditional window-based neural network, to capture the
contextual information to the most significant extent possible when learning word represen-
tations. Moreover, the model can reserve a more extensive range of the word order when
learning representations of texts. Second, it employs a max-pooling layer that automati-
cally judges which feature play critical roles in text classification, to capture the essential
components of the texts. By combining the recurrent structure and max-pooling layer,
the model utilizes the advantage of both recurrent neural models and convolutional neu-
ral models. Furthermore, the model exhibits a time complexity of O(n), which is linearly
correlated with the length of the text length.[20]

Figure 3.5: Recurrent convolutional neural network structure [20]

3.8 Word representation methods
In order to represent words in a form which computers can understand they have to be
converted to numbers. A vast majority of (rule-based and statistical) NLP and information
retrieval use symbolic representations of the words. In this case, the word is represented
by one hot vector, which contains a single 1 and many zeros. Each word represents one
dimension of the vector. Let’s consider a corpus with five words nlp, python, word, ruby,
one-hot. The vector representing word python is shown in the picture 3.6. To put it another
way, this means with language corpus containing 1 million words, each vector would hold
1 million dimensions with only one 1 and the rest would be zeros. Moreover, the one-hot

13

method does ignore similarities between words such as python and ruby (which are both
programming languages. Therefore the words have very similar meaning) [16].

One of the most successful ideas of modern NLP are distribution based word repre-
sentations [23]. These representations capture the similarity between the words, which is
a crucial thing for NLP. The distributed representation is learned based on the usage of
words. This allows words that are used in similar ways to result in having similar repre-
sentations, naturally capturing their meaning [10]. This notion of letting the usage of the
word define its meaning can be summarised by an often cited quip.

You shall know a word by the company it keeps! [15]

Moreover, the vector representations have only a few hundreds of dimensions no matter
the size of the corpus compared to the 1 million dimensions in the previous example. Word
embedding is one of those representations and it is going to be discussed in Section 3.9.

Figure 3.6: One-hot vector for word python [16]

3.9 Word embedding
Image and audio processing systems work with rich, high-dimensional data sets encoded
as vectors of the individual raw pixel intensities for image data or power spectral density
coefficients for audio data (see Figure 3.7). For tasks like object or speech recognition,
we know that all the information required to successfully perform the task is encoded in
the data (because humans can perform these tasks from the raw data). However, NLP
systems traditionally treat words as discrete atomic symbols, and therefore cat may be
represented as Id537 and dog as Id143. These encodings are arbitrary and provide no
useful information to the system regarding the relationships that may exist between the
individual symbols. This means that the model can leverage very little of what it has
learned about cats when it is processing data about dogs (such that they are both animals,
four-legged, pets, etc.). Representing words as unique and discrete ids furthermore leads
to data sparsity, and usually means that we may need more data in order to successfully
train statistical models [5].

14

Figure 3.7: Different data density of the audio, images and text data [5]

A word embedding is a learned representation of text where words that have the same
meaning have similar representation. Word embedding methods learn a real-valued vector
representation for a predefined fixed sized vocabulary from a corpus of text. Vector space
models (VSMs) represent (embed) words in a continuous vector space where semantically
similar words are mapped to nearby points (are inserted nearby each other). VSMs have
a long, rich history in NLP, but all methods depend in one way or another on the Dis-
tributional Hypothesis, which states that words that appear in the same contexts share
semantic meaning. The different approaches that leverage this principle can be divided
into two categories: count-based methods (e.g. Latent Semantic Analysis (LSA)), and pre-
dictive methods (e.g. neural probabilistic language models). Word embedding methods
such as Word2Vec, FastText and GloVe appeared to regularly and substantially outper-
form traditional Distributional Semantic Models (DSMs) [29]. Therefore in this work, the
Word2Vec, FastText and the GloVe models will be used for the vector representation of the
words. Moreover, since their performance can differ on different tasks, their performance
in use with our models will be compared.

3.9.1 Embedding layer

One of the embedding techniques is an embedding layer. The downside of this technique
is that it can be slow and it requires a lot of training data. On the other hand, it can
learn embeddings specific for the given data set and for the assigned specific NLP task
which can result in better performance of the model. The text in the data set has to be
cleaned and one-hot encoding vectors have to be created for words. Embedding layer is
then inserted before the actual ANN model used for the specific task. The vector space
of the embedding layer has to be selected and then all vectors are initialized randomly.
Training of the embedding layer is done by backpropagation of the errors [10].

3.9.2 Word2Vec

Word2Vec was developed by a former student of BUT Tomas Mikolov with his colleagues at
Google [25]. Word2Vec aims to create standalone word embeddings from source text corpus
and to do it more efficiently. Word2Vec became a standard for development of pre-trained
word embeddings. Moreover, Mikolov’s work demonstrated how it is possible to do vector

15

math with the word embedding. In other words, the vectors of words are situated in the
vector space such that we can subtract man from king then add word woman and the result
vector has values similar as the word queen. This captures the analogy king is to queen as
man is to woman.

Word2Vec is computationally efficient and it is in the predictive category of previously
mentioned Distribution Analysis. It provides two types of word embedding. The first type
is the continuous bag-of-words (CBOW) model. Its goal is to predict target words (e.g.
mat) from source context words (e.g. the cat sits on the). CBOW type is mainly used for
smaller data sets. It learns by predicting the current word based on its context.

On the other hand, the skip-gram model is the opposite. It aims to predict context
words from target word (see Figure 3.8 for comparison with CBOW) and it proved itself to
be useful mainly for use on large data sets. The skip-gram model learns by predicting the
surrounding words based on a current word. The source contexts in the text of both models
are represented by a sliding window with configurable size. The size has a substantial effect
on resulting vector similarities. Large windows tend to produce more topical similarities
and smaller windows tend to produce more functional and syntactic similarities.

Figure 3.8: Word2Vec embedding types the continuous bag-of-words and the skip-gram [10]

3.9.3 Global vectors for word representation

An extension to the Word2Vec method for efficiently learning word vectors, developed by
Pennington, et al. at Stanford [27] is the global vectors for word representation (GloVe)
algorithm. Classical VSMs representations of words were developed using matrix factor-
ization techniques such as LSA. The matrix factorization techniques do an excellent job of
using global text statistics but are not as good as the learned methods like Word2Vec at
capturing the meaning and demonstrating it on tasks like calculating analogies (e.g. the
king and queen example in Subsection 3.9.2).

GloVe is an approach to marry both the global statistics of matrix factorization tech-
niques like LSA with the local context-based learning in Word2Vec. Rather than using

16

a window to define local context, GloVe constructs an explicit word-context or word co-
occurrence matrix using statistics across the whole text corpus. The result is a learn-
ing model that may result in generally better word embeddings. GloVe is a new global
log-bilinear regression model for the unsupervised learning of word representations that
outperforms other models on word analogy, word similarity, and named entity recogni-
tion tasks [10].

3.9.4 FastText

Popular models for word embedding learn to ignore the morphology of words, by assigning
a distinct vector to each word. This is a limitation, especially for languages with large
vocabularies and many rare words. Therefore a new method was proposed in paper [8].
The method is based on the skip-gram model, where each word is represented by a bag
of character n-grams. A vector representation is associated to each character n-gram and
words are represented as the sum of these representations. It takes into account subword
information. The paper shows that the FastText model slightly outperforms Word2Vec
model in certain tasks.

17

Chapter 4

Application design and
Implementation

In order to create a quality application it is often required to conduct extensive research
and spend a lot of time thinking about the possible design of the solution before the actual
implementation. However, after the design is proposed it is essential to implement the
solution as well. This work is not an exception. Thus the reader can learn about the
proposed design and the implementation in this chapter.

4.1 Customer case features for classification
Currently, the assignment of the owner is not automated. However, there is already a
classifier which aims to determine what kind of area the issue belongs to and the engineers
with appropriate skills pick issues from these areas based on their skills set. These areas
are called SBR. In this thesis, DNNs will be used for classification of the owner, what could
speed up the process of assigning the support cases to the correct engineer with the right
skills. However, the interesting part will be to figure out how to cope with the fact that
the engineers may not work for Red Hat anymore. Another interesting thing to classify
would be the priority of the support case. This could help engineers to estimate the needed
priority for the support case.

4.1.1 Existing solution

This solution aims to classify the support cases into groups of people. Every group contains
people with particular skills set. This is called skills-based routing and the groups are
therefore called SBR groups. SBR group is a label for the customer support case which
represents an area of skills needed in order to fix or resolve the customer support case.
Customer support case can be labeled with more than one of these labels. As the Table 4.1
shows, each SBR group contains on average 40 technical support engineers. There are 48
relevant groups and about 700 000 cases with these labels in the English language at this
moment. Therefore, a classification of these labels is an excellent problem to be solved by
machine learning and DNN. Technical support engineers can have more of these labels as
well. The label for the users means that they have skills in those areas.

18

Count of support cases in English 700 000
Average count of engineers in SBR group 40
Count of relevant SBR groups 48

Table 4.1: Customer case count, SBR groups count and average engineers in one SBR at
the moment of writing this thesis.

The customer support cases are classified and labeled with appropriate SBR group by
an SBR classifier. This helps to create groups of the support cases which are relevant
for specific groups of technical engineers. Such as when the support case is about errors
in virtualization the correct group of engineers who are trained to solve virtualization
problems will be assigned to this support case. In the past, some models were created
for SBR classification. The best model was created by Michael A. Alcorn. It uses DNNs.
Specifically, it leverages the RCNN model. However, it uses LSTM instead of the RNN. The
SBR classifier aims to ease the support case process by assigning the correct SBR groups
to respective customer support cases.

4.1.2 Enhancement of the existing solution

In this work, we will examine and try to enhance the current solution for the SBR clas-
sification. We will try to enhance the accuracy, the speed of the training and testing by
experimenting with different DNN models which are known for an excellent performance
on the NLP tasks. Moreover, we will try to lower the memory footprint of the model
without increasing the time consumption of the model and data preparation and creation.
This could enable us to use bigger data sets or smaller memories for data storage and data
procession. Since the RCNN uses the Word2Vec for word embeddings and no further ex-
periments with different word embeddings models were not conducted, we will prepare and
experiment with the other very successful models such as FastText and GloVe. Further-
more, these models will be compared which should reveal the best word embedding model
for the SBR classifier.

4.1.3 Owner classification of the customer support cases

Since there are 40 engineers in one SBR group on average, we can see that even though the
SBR classifier would be very accurate, it would still assign the customer case to a group
of 40 people on average. Therefore we will try to classify the customer support cases to a
smaller number of people in this thesis. This could give more specific results to a question
who is the best fit in order to resolve the particular customer case. In other words, we will
try to classify the customer support case to top k users where the k will be between 40 to 1.
In the case where the k is equal to 1, we would get the concrete owner who should resolve
the customer case.

However, we have to keep in mind that this problem is very complicated even for a
human who would be trained to estimate the correct person with necessary experience who
should be able to fix the customer support case. Moreover, the trained person would have
to probably need to communicate with the possible candidates and the estimation could
take a lot longer time than the DNN would need.

19

4.2 Data structure
This work leverages two relevant database tables (see Figure 4.1) which contain aggregated
data from multiple sources. The first table represents the customer support cases. It
contains attributes such as title, product, severity, description, owner, priority and language
which mentioned are in the Section 2.1. Moreover, it contains other fields such as creation
date, resolution date, modification date, info about who created the support case and many
more (more than 100) which are not described in this thesis since they are not known right
after the case is created. However, they are filled in during the resolution process and a
lot of them store redundant info stored in different formats. Thus these attributes are not
relevant to our tasks. The next table contains info about our technical support engineers
such as their username, id, title and many more which are not described for the same
reason as the ones in the previous table. We assume that the correct owner of the customer
support case is the one who is the owner of the case after it has been closed.

Figure 4.1: Database structure
Case

title: string

description: string

product: string

version: string

severity: string

sbr_group: string

origin: string

ownerid: string

case_language: string

closeddate: date

createddate: date

accountid: string

casenumber: string

isdeleted: boolean

...

User

active_flag: boolean

id: string

username: string

firstname: string

lastname: string

country: string

...

4.3 Data preparation
First of all the data need to be processed using common data mining techniques such as
data cleaning, selection, transformation and, etc. In order to prepare the data, a python
program will be created. The fields used in the classifiers are going to be selected for each
task separately since for each task different fields are relevant. The data with the selected
fields will be downloaded from the database. The nominal data types are going to be
normalized into integer intervals by substitution of a unique number for every unique value

20

of the original data type. These are going to be saved as a python dictionaries for their
more comfortable usage in the future.

Another key thing is to process the description fields since they contain unstructured
text with the description of problems which customers experience. Therefore some of the
NLP methods are going to be used for this field in order to transform its unstructured
form into a structured one which can be understood better by the computers and deep
learning models used in the following parts of the application. These include methods
which transform words into vectors of numbers. After discussion of different possible word
representations in Section 3.8 the word embedding is going to be used. Therefore vectors of
words with information such as word similarity will be created from the description fields
of the support cases. As discussed in Section 3.8 the selected tools for the word embedding
are the Word2Vec, FastText and GloVe, and their performances will be compared. The
model with more suitable performance will be used in the final application. In order to
create these models, all the descriptions of the support cases are going to be downloaded
into one big file, which will serve as a source language corpus.

The whole data set is going to be divided into three parts or into two parts depending
on the validation technique selected in during further work. In case of the three parts data
splitting the first part is going to be a training data set, the second will be a validation set
and the last will be a test set. Commonly the data set is divided only into two parts which
are training set and the test set. However, this way overfitting and worse generalization
can occur. It is caused because the neural network can see the test set through the devel-
oper’s eyes. That means that the developer is trying to maximize the performance of the
DNN on the test set by fine-tuning the parameters of the DNN which often leads to worse
performance on a data which the DNN and the developer have never seen [11].

4.3.1 Implementation of the data preparation

Several python classes and scripts were created, in order to prepare the data. The first very
important class is the Database (see Figure 4.2) which takes care of the connection to the
database and implements data fetching methods needed by other classes. The connection
parameters can be set in file config.json. There is a possibility to omit the password for
security reasons and enter it securely during the program run through standard input.
Library psycopg2 was used as a database driver.

Figure 4.2: Database class

__init__(self)

activeOwnersQuery(self)

createConnection(config_file)

queryDates(prod=False)

tableName(prod=False)

caseNumberAttrib(prod=False)

fetchDistinctValues(self, attribute, attributeName=None)

fetchAttributeWithCasesCount(self, attribute)

findLastCaseNumber(self)

fetchCasesFromDB(self, attributes)

fetchAttributeWithCountLessThan(self, attribute, treshold=50)

data.private.Database.Database

__init__(self)

activeOwnersQuery(self)

createConnection(config_file)

queryDates(prod=False)

tableName(prod=False)

caseNumberAttrib(prod=False)

fetchDistinctValues(self, attribute, attributeName=None)

fetchAttributeWithCasesCount(self, attribute)

findLastCaseNumber(self)

fetchCasesFromDB(self, attributes)

fetchAttributeWithCountLessThan(self, attribute, treshold=50)

data.private.Database.Database

21

As mentioned in Section 4.3 the nominal data are encoded into integer values. For this
purpose a class EntityTranslator was created (see Figure 4.3). It is responsible for loading
the dictionaries which are used for the data encoding. Besides the translation of nominal
data to integers and vice versa it also offers basic info about the data such as the count of
distinct values of the specified attribute.

Figure 4.3: EntityTranslator class

__init__(self, attributes, filenamePrefix="")

load(self, attributes)

translateAttrib(self, attribName, value)

translateInt(self, attribName, value)

countOfValues(self, attribName)

getAllValuesOf(self, attribName)

data.EntityTranslator.EntityTranslator

__init__(self, attributes, filenamePrefix="")

load(self, attributes)

translateAttrib(self, attribName, value)

translateInt(self, attribName, value)

countOfValues(self, attribName)

getAllValuesOf(self, attribName)

data.EntityTranslator.EntityTranslator

The most important class is the DataProcessor (see Figure 4.4). It uses the other classes
to load the data from the database, convert the text attributes into the word embeddings,
translate the nominal values to integers and save the data into python dictionaries. Apart
from that it computes the expected size of data and allocates numpy arrays in order to
achieve better performance. It is also responsible for the elimination of the users with less
than the specified threshold of the support cases which can be done by usage of the ignore-
ClassesWithLessThan parameter. This parameter is very useful since the data contain a lot
of users with a very small amount of closed cases and therefore they will be removed from
the dataset. For more info about why these users are removed, please refer to Section 5.3.
Moreover, it divides the data into test and training set. A good practice is to shuffle data
before it is divided into training and test set. This is done by shuffling the indices of the
data. If the allocated arrays are not fully populated the empty parts are removed before
the data is saved.

Figure 4.4: DataProcessor class

__init__(self, db)

prepareData(self, x_text_attributes, x_attributes, y_attribute, renewEntities=False)

createAttribDictionaries(self, ignoreTreshold=None, attributeCounts={}, attributeName="", prefix="")

splitValues(self, values)

processAndSaveFetchedData(self, x_text_attributes, x_attributes, y_attribute)

getExpectedDataSize(self, isAugment, attribCounts, minCount, maxCount, generateCount, limit)

allocateMemoryForData(self, x_attributes, y_attribute)

removeTheUnusedParts(self, data_nn)

augmentTextData(self, text, attributeCount)

data.DataProcessor.DataProcessor

__init__(self, db)

prepareData(self, x_text_attributes, x_attributes, y_attribute, renewEntities=False)

createAttribDictionaries(self, ignoreTreshold=None, attributeCounts={}, attributeName="", prefix="")

splitValues(self, values)

processAndSaveFetchedData(self, x_text_attributes, x_attributes, y_attribute)

getExpectedDataSize(self, isAugment, attribCounts, minCount, maxCount, generateCount, limit)

allocateMemoryForData(self, x_attributes, y_attribute)

removeTheUnusedParts(self, data_nn)

augmentTextData(self, text, attributeCount)

data.DataProcessor.DataProcessor

With these classes, it is effortless to create desired data with a few lines of code (see
Listing 4.1). One has to provide an implementation of the Database class and has to specify
which attributes to fetch. In case a part of users should be ignored based on their support

22

dataProcessor = DataProcessor(Database())
dataProcessor.ignoreClassesWithLessThan = 100
x_text_attributes = ["subject", "description"]
x_attributes = ["product", "version"]
y_attribute = "owner"
dataProcessor.prepareData(x_text_attributes,

x_attributes,
y_attribute)

Listing 4.1: Data preparation

case count the property ignoreClassesWithLessThan has to be specified. After the data is
saved, we can use it for all our models.

For easy loading of the data and easy access a classes InputOutput and InputOutput-
ForSciKit were created (see Figure 4.5). The difference between these two is that in order
to prepare the data for scikit-learn1 models they have to be in a one-dimensional list.
Whereas, for the DNN we can have multidimensional lists as the input for the models. In
order to access desired part of the data one can use following properties of the DataLoader
x_train, y_train, x_test and y_train.

Figure 4.5: InputOutput and InputOutputForSciKit classes

__init__(self, fileNamePrefix="", withLeftAndRightContext = False)

init(self)

getXAttributes(self)

getXTextAttribute(self)

getYAttribute(self)

num_classes(self)

prepareInputs(self)

getInputPart(self, dataSet)

getInputAllPart(self, dataSet)

prepareOutputs(self)

getOutputPart(self, dataSet)

data.DataLoader.InputOutput

__init__(self, fileNamePrefix="", withLeftAndRightContext = False)

init(self)

getXAttributes(self)

getXTextAttribute(self)

getYAttribute(self)

num_classes(self)

prepareInputs(self)

getInputPart(self, dataSet)

getInputAllPart(self, dataSet)

prepareOutputs(self)

getOutputPart(self, dataSet)

data.DataLoader.InputOutput

__init__(self, fileNamePrefix="")

getXAttributes(self)

getXTextAttribute(self)

getYAttribute(self)

prepareInputs(self)

getInputPart(self, dataSet)

prepareOutputs(self)

getOutputPart(self, dataSet)

data.DataLoader.InputOutputForSciKit

__init__(self, fileNamePrefix="")

getXAttributes(self)

getXTextAttribute(self)

getYAttribute(self)

prepareInputs(self)

getInputPart(self, dataSet)

prepareOutputs(self)

getOutputPart(self, dataSet)

data.DataLoader.InputOutputForSciKit

4.3.2 Comparison of new data preparation with existing solution

In order to compare the data processor created for the owner classifications, it was edited
to prepare data for the SBR classification as well. The new data processor uses memory
slightly better by the different choice of data types and does not store redundant data
on disk. However, the most significant difference is in the RAM usage during the data
processing. Therefore we are able to process more cases which is convenient for data
augmentation mentioned in Section 5.3.5 and of course in the future since the data set is
still growing.

1http://scikit-learn.org/stable/

23

Table 4.2: New data processor versus old data processor
Existing data processor New data processor

Size of data saved on disk (MiB) 9867 4046
Processing time (s) 393.22 293.40
RAM usage during processing (MiB) 38963.39 17364.85
Loading time (s) 6.27 7.79
RAM usage after loaded (MiB) 11154.43 9299.84

4.4 Creation of word embeddings
Since the main source of information for models in this thesis is unstructured data containing
text, the word embeddings are going to be used. As mentioned in Chapter 3.8 there are
few different methods which achieve good results. Since our text corpus is quite significant
and the topic of data is very different than standard texts which can be found online such
as text corpus from Wikipedia 2 or google news3 or any other free accessible text corpus.
Therefore, we will train the word embeddings on our own text corpus to achieve better
results. This chapter consults how the word embeddings were created for our models. None
of the mentioned word embedding methods is strictly better for all kind of tasks than the
other methods. Therefore, the Word2Vec, GloVe and FastText methods will be used and
their performance with our models will be compared. For more comfortable work with
these models a library gensim4 was used in created programs.

4.4.1 Word2Vec

With use of the gensim library the creation of word embedding is very easy and can be
done in few lines of code:

Word2Vec = Word2Vec(LineSentence("text-corpus-filename"))
Word2Vec.save("wrod2vec-filename")

Listing 4.2: Word2Vec creation

However, in this work, there are more parameters used. Therefore, in order to create
and train the Word2Vec embeddings on our corpus, a class Word2VecHandler was created.
It contains a method createWord2Vec() used for the creation and training of the model and
the constructor is used for loading and more comfortable access to the model’s parameters.

4.4.2 GloVe

The gensim does not have its own implementation of the GloVe model and its training.
However, it does offer a converter from GloVe model into Word2Vec model and therefore
the class can be reused Word2VecLoader after the GloVe model is converted. The training
was done by the GloVe library. In order to train the model it was needed to set parameters
in a script demo.sh provided by this library and run it. After the training the conversion
was done by following command:

2https://corpus.byu.edu/wiki/
3https://code.google.com/archive/p/Word2Vec/
4https://radimrehurek.com/gensim/

24

python -m gensim.scripts.glove2Word2Vec \
--input <glove_file> --output <w2v_file>

Listing 4.3: GloVe creation

4.4.3 FastText

Class FastTextHandler was created for the FastText word embeddings. It is very similar to
the Word2VecHandler since the FastText is implemented in gensim just by extending the
Word2Vec class. The worst part is that it takes a long time to train the model. Training
time for FastText is significantly higher than the Gensim version of Word2Vec (15min 42s
vs 6min 42s on text85, 17 mil tokens, 5 epochs, and a vector size of 100) 6.

4.5 Creation and training of models
Scientists and researchers have come up with a lot of various models for NLP and text
classification. Every model performs differently depending on the dataset used. Moreover,
time requirements for training and testing vary as well. Consequently, experiments with
our data set have to be done in order to determine which model would be most suitable
for our cause. Since some comparison of relevant models has been conducted in the past,
it will be used as a start point. Needless to say, the comparisons were not conducted with
our data set. Thus experiments with different models will be done in this work. Interesting
models for our task are, for instance, RCNN, FastText, TextCNN, etc. Ensembles of models
often can enhance the model performance. Hence experiments with them are going to be
done as well. In order to create and build models a library Keras7 will be leveraged. It
utilises library TensorFlow8 as a backend for computations etc. There are created python
programs for selected models, e.g. for the RCNN model it is the RCNN.py program. It
contains methods for building the model, training, and methods for classification of an
input.

Since most of the models require a lot of computation power and the data set has
almost a million of support cases, it would be very time-consuming to train models on a
regular CPU. For this reason, the computations are going to be conducted on GPUs. So far
access to machines with powerful GPU has been granted. However, the machines are not
permanently accessible. Therefore, a Docker9 platform will be used for easier portability of
the application between these machines. Specifically, a Docker plugin called nvidia-docker
will be used for the GPU support and a TensorFlow Docker image with GPU support
containing all setup needed to run the library on GPUs. Consequently, this image will be
used and extended with custom dependencies needed for models and programs created in
this work.

5http://mattmahoney.net/dc/textdata.html
6https://github.com/RaRe-Technologies/

gensim/blob/develop/docs/notebooks/FastText_Tutorial.ipynb
7https://keras.io/
8https://www.tensorflow.org/
9https://en.wikipedia.org/wiki/Docker_(software)

25

4.6 Evaluation of models
The common way to evaluate the performance of the model is to train it on the training set
and then use a test set to see how successful was the training and how well the model can
classify the test data. However, sometimes the model can perform excellently on the test
data, but it fails to generalize on data which it has never seen. Therefore, the whole data set
is split into three parts training data set, testing data set and validation data set. During the
learning phase of the model, the performance is evaluated after each epoch on the validation
set. And after all training, the model performance is evaluated on the testing data set. The
specific sizes of the data sets can be observed in Table 4.3. The evaluation is implemented
by python script Validation.py which has functions for the evaluation and easier collection
of information about the trained models such as printModel(), saveHistory(), printHistory()
and validate(). Another technique to validate the model is k-Fold Cross-Validation which
aims to reveal the lack of the ability to generalize. However, this type of validation would
require much longer time to train and to validate the models.

Training set size 85.5%
Validation set size 4.5%
Testing set size 10%

Table 4.3: Data is split into three parts training set, validation set and testing set. The
size of the training data set is 85.5%, the size of the validation set is 4.5% and last, but not
least the size of the training set is 10%.

26

Chapter 5

Experimentation with the
application

This chapter will discuss and point out models used for classifications. Furthermore, exper-
iments conducted with models such as parameters fine tuning and different architectures of
ANNs used will be described. It will be possible to read about the performance of individual
models. The chapter is divided into four main parts.

First part describes experiments with models for SBR classification. Specifically, it
contains experiments with the existing state of the art SBR classifier which is constructed
from an ensemble of RCNN and complement naive bayes (CNB). We will take a look at
its accuracy and structure. Moreover, we will describe models created in this work for the
SBR classification which aim to enhance the existing solution from different perspectives
such as accuracy, time consumption and memory footprint. The aim of the experiments in
the first part is to find new possibilities for the SBR classification. The existing solution
uses the RCNN which, does not leverage the convolutions. It does leverage only the max-
pooling layers which can be found in some of the CNN. Therefore, we will experiment with
the regular CNNs since they do perform very good on NLP tasks as well. Moreover, the
CNNs will be combined with the LSTM in order to capture the sequential information in
the text. It is expected that the combination of the CNN and LSTM will have very similar
performance as the RCNN model. However, it could be less time consuming to train and
test, since the input fed into the LSTM layer is preprocessed by the CNN and therefore the
input contains fewer dimensions.

The second part will describe the effect of the different word embedding models used
in the SBR classification. There have been experiments conducted in which the GloVe did
outperform the regular Word2Vec on some tasks. Moreover, FastText did perform in some
of the NLP tasks better than the Word2Vec as well, according to some experiments [8].
Therefore this experiment aims to find out whether the FastText or the GloVe models are
any better for the SBR classification than the already used Word2Vec model for the word
embeddings.

In the third part, we will conduct experiments demonstrating whether there is a possi-
bility to classify the customer cases to smaller groups of the users. The aim of classification
into smaller groups of people is very straightforward. The fewer people will have to check
and read the respective customer support case the more time the users will save for different
tasks and that would mean faster resolution of the support cases. It is very likely that it is
a tough problem to classify the customer case to one specific user. Therefore, we will try

27

to classify the customer cases into groups of top k users of various sizes such as 1, 5, 10, 15,
20, 25, 30, 35 and 40 and the results are going to be compared with the current solution
which is SBR classifier. We expect very high accuracy mainly in experiments where the k
is higher than 20.

Last but not least experiments with different class sizes will be conducted, since the data
is imbalanced and a lot of classes are tiny. In other words, we will create three different
datasets. Each data set will contain data with owners who have at least 1000, 2000 and
3000 closed support cases and after the models are trained we will look at the specific owner
classification and top 5 owners classification. This experiment aims to explore the potential
of the models and the impact of the class sizes and counts. The results are expected to
improve with bigger size of the classes and smaller count of the classes.

5.1 SBR classification
The existing solution for the SBR classification mentioned in Section 4.1.1 is the slightly
modified RCNN created by Michael A. Alcorn [7]. In this section, we will look at this model,
its structure and accuracy more precisely. During this work, a lot of different DNN models
were created. One of the best models was the combination of CNN and LSTM. Therefore,
it will be the next model we will look at in this section. The selected attributes for the
SBR classification are product, version, severity, origin, subject and description. In order
to conduct SBR classification experiments the dataset was prepared by a script provided
in the existing solution of the SBR classifier.

RCNN model

It uses DNNs specifically it leverages the RCNN model, however it contains the LSTM
layers instead of the RNN layers [7] the structure can be observed in the Figure 5.1. The
first three input layers of the model contain the description of the issue. However, they are
not the same, since the first input layer is shifted to left by one word and the third input
layer is moved to the right by one word. This way in one time step we examine one word
and its left and right context words as well. The words in the description are represented
as indices of words in the Word2Vec and they are encoded into the word vectors in the
embedding layer.

The rest of the input layers contain the attributes such as product, version, severity and
origin encoded into one hot vector. The dataset used for the SBR prediction was prepared
from customer support cases which were created between 2012-01-01 and 2017-08-01. This
dataset was divided into three parts (training, validation and testing set). Therefore, the
evaluation and training of the SBR classification models in this Section were conducted on
the same data sets.

The accuracy of the RCNN model was 79.56% on the data set after ten epochs. Further-
more, there was also created a different machine learning model called CNB [28] which has
accuracy 76.34% on the data set. Moreover, an ensemble of these two models was created
by Michael in the past. The measured accuracy of the ensemble was 82.21% on the created
data set. These experiments with already existing models were done in order to be able to
compare their performance with models created during this work.

28

Figure 5.1: RCNN by Michael A. Alcorn
InputLayer

MaskingInputLayer

InputLayer

Embedding

LSTM

LSTM Concatenate TimeDistributed(Dense)

BatchNormalization Activation Lambda

Concatenate

InputLayer

InputLayer

InputLayer

InputLayer

Dense

Combination of the CNN and LSTM

One of the best models was combination of CNN and Bidirecitonal LSTM (see Figure 5.2).
The model has two CNN layers with 128 filters and kernel size 5. Both are followed by
max pooling layer with pool size 5. Next layer is the Bidirectional LSTM and the output
of this layer is concatenated with the rest of the input layers which contain the attributes
product, version, severity and origin encoded into one hot vectors. The accuracy of this
model on its own was 78.67% and the accuracy in the ensemble with CNB was 81.76%
which is slightly worse than the RCNN model mentioned in this section. However, if the
fast training and validation would be in focus, then this model would be more suitable since
the average training time was 13.3025x faster than the RCNN model (see Table 5.1 for time
and accuracy comparison).

Figure 5.2: Combination of CNN and LSTM
InputLayer Embedding Conv1D MaxPooling1D Conv1D MaxPooling1D Bidirectional(LSTM)

Concatenate

InputLayer

InputLayer

InputLayer

InputLayer

Dense Dense

Model Seconds per epoch Accuracy (%) Accuracy of Ensemble (%)
RCNN 3293.7 79.56 82.21
CNN + LSTM 247.6 78.67 81.76

Table 5.1: Accuracy and training time comparison.

29

5.2 Performance comparison of word embedding models
The Word2Vec model was used during data creation and model creation in the previous
models. However, two other models (GloVe and FastText) for word embedding were created
after the Word2Vec. Therefore, experiments were conducted with these models as well.
First, the embeddings had to be created (see Section 4.4 for more info) and then the models
mentioned in Section 5.1 had to be recreated and rerun with the new word embeddings.
The results of these experiments are shown in Table 5.2. As we can see the differences are
very modest. However, the Word2Vec proved itself as the best one for the ensembles of the
models.

RCNN CNB CNN+LSTM RCNN+CNB CNN+LSTM+CNB
Word2Vec 79.56% 76.34% 78.67% 82.21% 81.76%
GloVe 79.24% 76.36% 77.86% 82.17% 81.67%
FastText 79.31% 76.17% 78.76% 82.00% 81.56%

Table 5.2: Accuracy with different word embedding.

5.3 Owners classification
We learned in the Section 5.1 that the best SBR classifier has accuracy 82.21%. However,
each SBR contains on average 40 technical support engineers. Therefore classification of the
specific technical support engineers was proposed in this work. For this task, the classes
are going to be the respective technical engineers. However, only current employees are
going to be considered in order to avoid suggestions to assign a customer support case to
technical engineer which is not working for Red Hat anymore.

There were significant differences in the sizes of the classes before the data was processed.
More precisely, it means that there is a vast number (almost 33%) of users who have less
than 100 support cases closed and on the other side there is a really small number of people
(nearly 0.6%) who have more than 3500 support cases closed. These values cause a worse
performance of the models. In order to avoid this behavior, the users with less than 100
cases or with more than 3500 cases are removed from the dataset. The final histogram of
owners in Figure 5.3 shows a slightly better data layout after the aforementioned users have
been removed from the dataset.

30

Figure 5.3: Histogram of owners without the ignored owners

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00
31

00
32

00
33

00
34

00
0

10

20

30

40

50

60

70

80

90

100

Case counts

O
w

ne
rs

5.3.1 Baseline for owners classification

A DummyClassifier 1 model can be used as a simple baseline to compare with other real
classifiers. From the strategy choices the most_frequent had the best accuracy. Therefore,
in case of the owner classification this DummyClassifier will classify all issues as most
suitable for one most common user from the data set. In other words, the algorithm will
always pick the user who has the most significant amount of the customer support cases.
The accuracy of this classifier was very low only 0.43%. Therefore, a better baseline was
proposed which is based on the SBR classifier. Since the accuracy of the best SBR classifier
was 82.21% and one SBR contains 40 technical support engineers a baseline from these
values was proposed in this work. Therefore the accuracy of the SBR classifier will be
divided by the count of the technical support engineers in one SBR which results in 2.06%
accuracy.

5.3.2 Specific owner classification

In the following experiments, the best fitting owner for particular customer support case is
going to be classified. Various DNN models are going to be reviewed and compared. These
include RCNN, CNN, combination of CNN with LSTM. Moreover, a model CNB which
does not use the deep learning is going to be compared as well.

RCNN model

The RCNN model for the SBR classification provided by Michael A. Alcorn performed very
well in Section 5.1. Therefore, it was used as a starting point for the owner classification.
It was rewritten in order to predict the owner for a specific customer support case. The
structure of the model is almost the same (see Figure 5.1). The main difference is in the
input layer shape, the output layer shape and attributes which were selected for this task.
Specifically the selected are attributes product, version, severity, sbr_group, origin, subject
and description. After ten epochs of training, the model’s accuracy on the testing data

1http://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html

31

set was 14.55%. One epoch of the training took approximately 4460 seconds. The longer
training time is caused because of the larger amount of the classes used in the model.

CNN model

The next model with interesting results created during this work is a simple CNN with
one 1D convolution layer, Embedding, GlobalMaxPooling, Dense, Activation and Dropout
layers (see Figure 5.4). More details about these layers can be found in the Keras2 library
documentation. A similar structure with solid performance on sentence classification was
proposed by Yoon Kim, 2014 [17]. The accuracy of this model was 14.03% after 15 epochs
of training.

Figure 5.4: CNN model structure for owners classification
InputLayer Embedding Dropout Conv1D GlobalMaxPooling1D

Concatenate

InputLayer

InputLayer

InputLayer

InputLayer

InputLayer

Dense Dropout Activation Dense

The training history (see Figure 5.5) reveals the overfitting and the validation accuracy
was not improved after 8th epoch. As we can see in the image the validation accuracy
after 8th epoch was 11.84%. Furthermore, a difference between the accuracy on the testing
dataset (14.03%) and the accuracy on the validation set (11.84%) can be observed. This is
caused by the fact that the testing dataset is several times bigger than the validation set.

2https://keras.io/

32

Figure 5.5: CNN training history (the best accuracy on the validation set 11.84% achieved
after 8th epoch)

0 2 4 6 8 10 12 14
Epoch

6%

8%

10%

12%

14%

16%

Ac
cu

ra
cy

 (%
)

CNN accuracy
Train
Test

The overfitting is often eliminated by adding more dropout layers or by increasing the
dropout rate. This model already contains dropout layers with 20% dropout rate. Hence
it was increased to 50% and the training duration was increased from 15 epochs to 30. The
increased dropout rate prevented the overfitting as the history of the training shows (see
Figure 5.6). However, the final accuracy 13.04% on the testing set was not better than
what was achieved with the 20% dropout rate.

Figure 5.6: CNN training history with dropout rate 50%

0 5 10 15 20 25 30
Epoch

2%

4%

6%

8%

10%

12%

Ac
cu

ra
cy

 (%
)

CNN+DROPOUT-0.5+Adam accuracy
Train
Test

33

Combination of the CNN with LSTM

Another model used for owner classification is the CNN + LSTM mentioned in Section 5.1.
The structure is slightly different from the mentioned model on the Figure 5.2 since the
LSTM in this case is not wrapped into the Bidirectional layer wrapper. The accuracy of
this model was 14.05% after 15 epochs of training.

Table 5.3: Performance of the mentioned models on the testing data set during the specific
owner classification

Model Accuracy Average seconds per epoch
DummyClassifier 0.43% -
SBR classifier / 40 2.06% 3293.70
RCNN 14.55% 4460.00
CNN+Dropout0.2 14.03% 200.00
CNN+Dropout0.5 13.04% 200.00
CNN+LSTM 14.05% 144.30
CNB 12.25% -

The accuracy of the respective models along with the training times per epoch can be
observed in Table 5.3. The best results were achieved with the RCNN model. However,
the other mentioned models had very similar accuracies and all of them performed several
times better than the baselines (DummyClassifier and SBR classifier accuracy divided by
the average of 40 people in one SBR group).

Other machine learning algorithms

During this thesis, we created models which do not use the deep learning in order to compare
them with the built deep learning models. We experimented with the CNB algorithm. Text
data were preprocessed by TfidfVectorizer3 which converts a collection of raw documents
to a matrix of term frequency–inverse document frequency (TF-IDF) features. The data
set used for these algorithms was prepared along with the data set for the deep learning
algorithms. Therefore the data is split the same way and the data sets contain the same
data. This way the CNB model achieved the accuracy of 12.25% which is slightly worse
than the deep learning algorithms (see Table 5.3).

5.3.3 Top k owners

The respective accuracies of the models and the baselines for owners classification are quite
low. This is caused mainly because of there is a lot of classes without enough data for
this task. Moreover, there could be more technical engineers who are able to resolve the
issue or sometimes even people without relevant issues already fixed in the past could be
able to address the issue. Sadly this appears to be too complex problem to be solved
by DNN with current dataset size and layout. Therefore the trained models were also
used for classification of top k owners which should be a slightly less complicated problem
depending on the k value size. Again the SBR classifier is used as the baseline for this task.
The resulting accuracy of the SBR classifier for the respective k values was calculated with

3http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

34

use of the equation 5.1.
𝑆𝐵𝑅_𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑆𝐵𝑅_𝐺𝑟𝑜𝑢𝑝_𝑆𝑖𝑧𝑒
* 𝑘 (5.1)

The resulting values and the values measured from the rest of the models are shown in
Figure 5.7 and the actual values can be observed in Table 5.4. All of the created models
outperformed the baseline which can be seen in the table. Moreover, the RCNN had
the best results in specific owner classification and top 5 owners classification, and it was
outperformed by the CNN+LSTM model in the prediction of top 10 owners up to top 40
owners. Likewise, the CNN model outperformed the RCNN model in the prediction of top
20 owners up to top 40 owners.

Table 5.4: Top k owners classification accuracy of different models
k CNN+LSTM RCNN CNN+Dropout0.2 CNN+Dropout0.5 SBR classifier
1 14.05% 14.55% 14.03% 13.04% 2.06%
5 42.95% 43.03% 42.53% 40.90% 10.28%
10 59.60% 59.32% 58.73% 57.18% 20.55%
15 69.27% 68.53% 68.47% 66.88% 30.83%
20 75.89% 74.80% 75.05% 73.47% 41.11%
25 80.12% 79.11% 79.46% 78.04% 51.38%
30 83.38% 82.35% 82.61% 81.38% 61.66%
35 85.84% 84.76% 85.16% 83.94% 71.93%
40 87.78% 86.60% 87.10% 85.85% 82.21%

Figure 5.7: Top k owners classification accuracy of different models in comparison with the
SBR classifier

1

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

CNN+LSTM RCNN CNN+Dropout0.2 CNN+Dropout0.5 SBR classifier

Accuracy

To
p

k
va

lu
e

5.3.4 Effect of different data class sizes on the owner classification

We learned that specific owner classification and top 5 owners classification accuracies do
outperform the baselines even though the accuracies are rather low. It is caused mainly

35

because of high imbalance of the data classes and most of the classes are very small. There-
fore, this experiment will analyze the effect of the class sizes and their counts. Only the
specific owner and top 5 owners classifications were chosen for this experiment since the
data sets used are going to contain much fewer classes.

For this experiment, we will use aforementioned models CNN with LSTM and the
RCNN. The size of the classes is going to be adjusted by removing users who have less
than 1000, 2000 and 3000 support cases and their support cases are going to be removed
from the dataset as well. Python script described by Listing 4.1 will be used for the data
preparation with property ignoreClassesWithLessThan set to the 1000, 2000 and 3000. We
have already prepared the data for the users with the minimum count of 100 customer
support cases from previous experiments, therefore results from them can be compared as
well. More precisely we will take a look at the accuracies of the specific owner and top 5
owners classifications.

The concrete counts of the data sizes along with their minimum support case counts and
the count of the all support cases in the adjusted data sets can be observed in Table 5.5.
We can see that there is 236 users who have at least 1000 support cases and the total sum
of the cases of these owners is 389198 etc.

Table 5.5: The adjusted datasets with minimum cases per user and count of users who have
at least this minimum of cases. Total data set size represents total count of the customer
support cases in the adjusted data set.

Min cases per user Number of classes (users) Total data set size
100 811 643754
1000 236 389198
2000 66 152820
3000 21 41694

Specific owner classification was improved as expected when the minimum of the support
cases per user was set to higher value (see Figure 5.8). Both models CNN with LSTM and
RCNN performed very similar. The best result achieved by the CNN combined with LSTM
was 53.27% when only users with at least 3000 closed cases were in the data set. This is
a significant improvement against the best result 14.55% achieved by the RCNN when the
minimum of the cases per user was set to 100. The improvement is caused mainly because
the DNNs are trained with the bigger amount of the data per one class coupled with much
fewer classes in the data set (see Table 5.5).

36

Figure 5.8: Effect of different sizes of the classes in specific owner classification

100 1000 2000 3000
0%

10%

20%

30%

40%

50%

60%

14.05%
18.05%

32.20%

53.27%

14.55%

20.11%

34.42%

52.55%

CNN+LSTM RCNN

Minimum cases per user

A
cc

ur
ac

y

The top 5 owners classification was quite successful even in previous experiments where
the best result achieved was had accuracy 43.03%. After we considered only the users with
the higher minimum of closed cases the accuracy increased even more. The best result
94.23% was achieved by CNN with LSTM. One of the reasons for such a big accuracy is
that the data set in this case contains only 21 classes and we are looking at top 5 of them
during the classification.

Figure 5.9: Effect of different sizes of the classes in top 5 owners classification

100 1000 2000 3000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

42.95%

54.09%

75.65%

94.23%

43.03%

57.10%

77.71%

94.18%

CNN+LSTM RCNN

Minimum cases per user

A
cc

ur
ac

y

37

5.3.5 Further observations and experiments

There were more experiments conducted which aimed to improve the top 5 owners classi-
fication. For instance, an experiment to generate more data was conducted in this thesis
which is inspired by an attempt to use this approach in NLP by synonyms substitution [30].
This is often called data augmentation and this approach can be advantageous for image
processing fields to get more data samples. Few of the most straightforward approaches are
flipping, moving, cropping and color changing of the images. In case of the NLP, it is not
that simple and straightforward. To give an illustration one cannot flip the sentence and
read it backward etc. Therefore different approaches have to be used. The best approach
would be to have a human rephrase the sentences. However, it is unrealistic [30]. There has
been created a python class Synonyms which implements this approach in this work using
the Natural Language Toolkit4 library to get the synonyms for words. The augmentation
was used on customer support cases owned by users who have less than 1000 of them. The
algorithm randomly picked 15% of the words in the description of the customer support
cases and these words were substituted by their synonyms. Sadly this approach did not
improve the performance of the models created for the owner classification.

Next experiment to enhance the accuracy of the top 5 owners classification was a heuris-
tically picking the top 5 owners from the top 40 owners. Firstly the owners who had at least
1 SBR group matching with the SBR groups of the customer support case were prioritized
and 3 of them have been added to the resulting top 5 list. The rest of the top 5 list was
filled with owners who were not already on the list and who had the highest value of their
neuron in the DNN output layer. Experiments with the different number of the prioritized
users with matching SBR groups were conducted as well. However, this approach proved
to be ineffective as well, since the accuracy of the DNN models decreased instead of the
hoped-for increase of the accuracy.

5.3.6 Future plans

In the future, we could try to invert the process and try to recommend cases to specific own-
ers. The similar approach was used in the past for video recommendations on youtube [12].
The owners would be encoded to embeddings as well as the customer cases by the similar
algorithm to Word2Vec. Moreover, we could leverage the geographic information about the
user and the customer support cases.

4https://www.nltk.org/

38

Chapter 6

Conclusion

Nowadays the AI and the NLP are very successful in various complex tasks. Therefore,
this work is aimed to leverage and explore possibilities of these technologies since a very
interesting idea was proposed by engineers at Red Hat to use these technologies and classify
useful features of available data.

This work uses the data gathered from the customer support management system in
order to find possible enhancements to the process leading to resolve problems of Red Hat’s
customers. The customer support management system tracks a lot of problems which the
customers faced. Every problem should be tracked in a separate customer support case
which contains various information such as what is the problem, who reported it, who is
working on it etc.

Since there is a significant number of products and their versions supported by Red
Hat, it is an arduous task to assign the correct employee to the proper support case. There
is an existing solution to this problem. It aims to classify the support cases into groups of
people. Every group contains people with particular skills set. This is called skills-based
routing and the groups are therefore called SBR groups. However, there is on average 40
people in each of the SBR group. Therefore this work aims to enhance and optimize the
existing solution as well as to propose new methods leading to the reduction of the number
of people who have to go through support cases which are not relevant to them. This
could potentially speed up the support case resolution process since the support case will
be worked on by engineers who are the best fit for the support case.

In order to deliver the knowledge and the results achieved in this work, it was divided
into six chapters. The Chapter 1 introduces the reader to this work and discusses why the
AI and the deep learning is so popular in these days. In the next Chapter 2 the reader
can learn how does the Red Hat’s support work, what is the support case, what kind of
attributes it contains and the motivation of this work. One of the most relevant attributes
of the support cases is a description of the problem. These descriptions can be written in
different languages. However, the most significant part of the support cases available is
written in the English language. Therefore, the support cases written in English are used
in this thesis.

The NLP and modern approaches often used in this science field are described in the
Chapter 3. Approaches such as deep learning and deep neural networks are described in
more details. Furthermore, the reader can learn about the algorithms available which aim
to encode the words into vectors of numbers.

The design and the implementation of the application are described in the Chapter 4.
Data structure and data preparation are outlined here as well. Moreover, users can learn

39

what features of the customer support case were classified and what solutions were already
implemented in the past in order to simplify the support case resolution process. Enhance-
ments and optimizations of this solution are proposed and implemented as well as different
approaches to simplify the resolution process. Specifically, we explored possibilities of the
specific owner classification and top k owners classifications. Furthermore, the implemen-
tation and creation of different word embeddings using different algorithms are examined.

Several experiments were conducted and their results are described in the Chapter 5.
Firstly the existing solution for SBR classification was examined and experimented with.
Faster training and testing times were achieved by implementation of a new model in this
work with very similar performance as the existing one. Moreover, the memory needed
to process and to save the datasets was decreased after the optimizations. In order to
increase the accuracy of the models, a different word embedding algorithms were used and
their influence on the performance was examined. However, even though in the past the
FastText and GloVe models outperformed the Word2Vec in some tasks, our experiments
revealed that for our work the best performance is achieved with the Word2Vec model.

Secondly, experiments with specific owners and top k owners classifications were con-
ducted in order to explore the possibilities to reduce the count of the users who need to go
through the specific support case. We were able to achieve very similar accuracies such as
80.12% in top 25 owners classifications compared to the SBR classifier which classifies into
groups of 40 people on average with accuracy 82.21%. Furthermore, we investigated the
effect of removing smaller data classes from the data set. These experiments revealed that
even the specific owner classification has excellent accuracy 53.27% after the users with less
than 3000 closed support cases were removed from the dataset. Likewise, the top 5 owner
classification was very successful 94.23% on the same data set containing users with at least
3000 closed support cases.

40

Bibliography

[1] Life Cycle and Update Policies. Accessed: May 22, 2018.
Retrieved from: https://access.redhat.com/support/policy/update_policies/

[2] Natural-language processing. Accessed: May 22, 2018.
Retrieved from: https://en.wikipedia.org/wiki/Natural-language_processing

[3] Reference Guide for Engaging with Red Hat Support. Accessed: May 22, 2018.
Retrieved from: https://access.redhat.com/articles/280093

[4] The story of AlphaGo so far. Accessed: May 22, 2018.
Retrieved from: https://deepmind.com/research/alphago/

[5] Vector Representations of Words. Accessed: May 22, 2018.
Retrieved from: https://www.tensorflow.org/tutorials/
word2vec#motivation_why_learn_word_embeddings

[6] Ackerman, B.: What happens when you open a support case with Red Hat?
Accessed: May 22, 2018.
Retrieved from: https://access.redhat.com/blogs/2221411/posts/3256281

[7] Alcorn, M. A.: Recurrent Convolutional Neural Network Text Classifier. Accessed:
May 22, 2018.
Retrieved from: https://github.com/airalcorn2/Recurrent-Convolutional-
Neural-Network-Text-Classifier

[8] Bojanowski, P.; Grave, E.; Joulin, A.; et al.: Enriching Word Vectors with Subword
Information. CoRR. vol. abs/1607.04606. 2016. 1607.04606.
Retrieved from: http://arxiv.org/abs/1607.04606

[9] Britz, D.: Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs.
Accessed: May 22, 2018.
Retrieved from: http://www.wildml.com/2015/09/recurrent-neural-networks-
tutorial-part-1-introduction-to-rnns/

[10] Brownlee, J.: What Are Word Embeddings for Text? Accessed: May 22, 2018.
Retrieved from:
https://machinelearningmastery.com/what-are-word-embeddings/

[11] Brownlee, J.: What is the Difference Between Test and Validation Datasets?
Accessed: May 22, 2018.
Retrieved from:
https://machinelearningmastery.com/difference-test-validation-datasets/

41

https://access.redhat.com/support/policy/update_policies/
https://en.wikipedia.org/wiki/Natural-language_processing
https://access.redhat.com/articles/280093
https://deepmind.com/research/alphago/
https://www.tensorflow.org/tutorials/word2vec#motivation_why_learn_word_embeddings
https://www.tensorflow.org/tutorials/word2vec#motivation_why_learn_word_embeddings
https://access.redhat.com/blogs/2221411/posts/3256281
https://github.com/airalcorn2/Recurrent-Convolutional-Neural-Network-Text-Classifier
https://github.com/airalcorn2/Recurrent-Convolutional-Neural-Network-Text-Classifier
1607.04606
http://arxiv.org/abs/1607.04606
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
https://machinelearningmastery.com/what-are-word-embeddings/
https://machinelearningmastery.com/difference-test-validation-datasets/

[12] Covington, P.; Adams, J.; Sargin, E.: Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems. ACM. 2016. pp. 191–198.

[13] Deng, L.; Yu, D.: Deep Learning: Methods and Applications. Technical report. May
2014.
Retrieved from: https://www.microsoft.com/en-us/research/publication/deep-
learning-methods-and-applications/

[14] Feldman, J.; Rojas, R.: Neural Networks: A Systematic Introduction. Springer Berlin
Heidelberg. 1996. ISBN 9783540605058.
Retrieved from: https://books.google.cz/books?id=txsjjYzFJS4C

[15] Firth, J.: A Synopsis of Linguistic Theory, 1930-1955. 1957.
Retrieved from: https://books.google.cz/books?id=T8LDtgAACAAJ

[16] Hironsan: Why is Word Embeddings Important for NLP? Accessed: May 22, 2018.
Retrieved from: http://ahogrammer.com/2017/03/22/why-is-word-embeddings-
important-for-natural-language-processing/

[17] Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882. 2014.

[18] Kiser, M.: Introduction to Natural Language Processing (NLP). Accessed: May 22,
2018.
Retrieved from: https:
//blog.algorithmia.com/introduction-natural-language-processing-nlp/

[19] Krenker, A.; Bester, J.; Kos, A.: Introduction to the artificial neural networks. In
Artificial neural networks-methodological advances and biomedical applications.
InTech. 2011.

[20] Lai, S.; Xu, L.; Liu, K.; et al.: Recurrent Convolutional Neural Networks for Text
Classification. In AAAI, vol. 333. 2015. pp. 2267–2273.

[21] LeCun, Y.; Bottou, L.; Bengio, Y.; et al.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE. vol. 86, no. 11. 1998: pp. 2278–2324.
Retrieved from: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

[22] Lopez, M. M.; Kalita, J.: Deep Learning applied to NLP. arXiv preprint
arXiv:1703.03091. 2017.

[23] Manning, C.: Representations for Language: From Word Embeddings to Sentence
Meanings. Accessed: May 22, 2018.
Retrieved from:
https://nlp.stanford.edu/manning/talks/Simons-Institute-Manning-2017.pdf

[24] Mehrotra, K.; Mohan, C.; Ranka, S.: Elements of Artificial Neural Networks. A
Bradford book. MIT Press. 1997. ISBN 9780262133289.
Retrieved from: https://books.google.cz/books?id=6d68Y4Wq_R4C

42

https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/
https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/
https://books.google.cz/books?id=txsjjYzFJS4C
https://books.google.cz/books?id=T8LDtgAACAAJ
http://ahogrammer.com/2017/03/22/why-is-word-embeddings-important-for-natural-language-processing/
http://ahogrammer.com/2017/03/22/why-is-word-embeddings-important-for-natural-language-processing/
https://blog.algorithmia.com/introduction-natural-language-processing-nlp/
https://blog.algorithmia.com/introduction-natural-language-processing-nlp/
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://nlp.stanford.edu/manning/talks/Simons-Institute-Manning-2017.pdf
https://books.google.cz/books?id=6d68Y4Wq_R4C

[25] Mikolov, T.; Sutskever, I.; Chen, K.; et al.: Distributed representations of words and
phrases and their compositionality. In Advances in neural information processing
systems. 2013. pp. 3111–3119.
Retrieved from: https://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf

[26] Pavlovsky, V.: Introduction To Convolutional Neural Networks. Accessed: May 22,
2018.
Retrieved from:
https://www.vaetas.cz/blog/intro-convolutional-neural-networks/

[27] Pennington, J.; Socher, R.; Manning, C. D.: GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural Language Processing (EMNLP).
2014. pp. 1532–1543.
Retrieved from: http://www.aclweb.org/anthology/D14-1162

[28] Rennie, J. D.; Shih, L.; Teevan, J.; et al.: Tackling the poor assumptions of naive
bayes text classifiers. In Proceedings of the 20th international conference on machine
learning (ICML-03). 2003. pp. 616–623.

[29] Ruder, S.: An overview of word embeddings and their connection to distributional
semantic models. Accessed: May 22, 2018.
Retrieved from: http:
//blog.aylien.com/overview-word-embeddings-history-word2vec-cbow-glove/

[30] Zhang, X.; LeCun, Y.: Text understanding from scratch. arXiv preprint
arXiv:1502.01710. 2015.

43

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.vaetas.cz/blog/intro-convolutional-neural-networks/
http://www.aclweb.org/anthology/D14-1162
http://blog.aylien.com/overview-word-embeddings-history-word2vec-cbow-glove/
http://blog.aylien.com/overview-word-embeddings-history-word2vec-cbow-glove/

Appendix A

Manual

Prepare environment
Install prepared nvidia-docker image with all dependencies:

nvidia-docker pull mmarus/my-tensorflow

Copy sources
Copy src/ directory from CD.

Database setup
Set your database credentials in connection.json file.

Prepare word embeddings Prepare your text corpus into file ”all_text.txt“ and run:
python3 data/Word2VecHandler.py

Prepare data
Prepare data either for SBR or owner classification by running following commands
in the created Docker image:

#Prepare data for the Owner classification
python3 OwnerClassification/PrepareData.py
#Prepare data for the SBR classification
python3 SBRClassification/PrepareData.py

The list of used attributes for classifications can be changed:

∙ In the PrepareData.py before the data is generated.
∙ When creating the InputOutput() class by providing attributes parameter.

In order to ignore classes with less or more than a certain amount of data use following
parameters of the DataProcessor class before the data is generated:

dataProcessor = DataProcessor(db)
dataProcessor.ignoreClassesWithLessThan = 100
dataProcessor.ignoreClassesWithMoreThan = 3500

Run models
Run the desired model located either in OwnerClassification or SBRClassification
package. For example, we can run the CNN model by running following command in
the created Docker image:

44

python3 OwnerClassification/CNN.py

List of models mentioned in the thesis

∙ Owner classification
– CNN
– CNB
– CNN_LSTM
– RCNN

∙ SBR classification
– SBR_CNN_LSTM
– SBR_RCNN
– SBR_ensemble - this will evaluate the mentioned models and the ensembles

of DNN models with the SBR_CNB

45

	Introduction
	Red Hat's Support
	Support case
	Motivation

	NLP-header and ANNs
	NLP-header
	Deep learning
	DNN
	ANN
	CNN
	RNN
	RCNN
	Word representation methods
	Word embedding
	Embedding layer
	Word2Vec
	GLOVE
	FastText

	Application design and Implementation
	Customer case features for classification
	Existing solution
	Enhancement of the existing solution
	Owner classification of the customer support cases

	Data structure
	Data preparation
	Implementation of the data preparation
	Comparison of new data preparation with existing solution

	Creation of word embeddings
	Word2Vec
	GloVe
	FastText

	Creation and training of models
	Evaluation of models

	Experimentation with the application
	SBR classification
	Performance comparison of word embedding models
	Owners classification
	Baseline for owners classification
	Specific owner classification
	Top k owners
	Effect of different data class sizes on the owner classification
	Further observations and experiments
	Future plans

	Conclusion
	Bibliography
	Manual

