
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

SECRET SHARING AUTHENTICATION KEY AGREEMENT
AUTENTIZOVANÉ USTANOVENÍ KLÍČE S PODPOROU SDÍLENÉHO TAJEMSTVÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Pavla Ryšavá

SUPERVISOR
VEDOUCÍ PRÁCE

M.Sc. Sara Ricci, Ph.D.

BRNO 2022



Date of project 
specification:

7.2.2022
Deadline for 
submission:

 24.5.2022

Supervisor:     M.Sc. Sara Ricci, Ph.D.

 
doc. Ing. Jan Hajný, Ph.D.

Chair of study program board 
 

Master's Thesis 
Master's study program Information Security

Department of Telecommunications 
Student: Bc. Pavla Ryšavá ID: 203713
Year of 
study:

 2 Academic year:  2021/22

TITLE OF THESIS:

Secret Sharing Authentication Key Agreement

INSTRUCTION:

The work is focused on the design and implementation of multi-device authentication key agreement for
establishing an authenticated secure channel. The aim of the thesis is to analyze and compare existing co-
signing and AKA schemes on IoT devices. Moreover, the student should explore the current solutions for
allowing an authorized subset of devices to establish an authenticated secure channel. Part of the work will be
the implementation of a more advance AKA protocol according to the assignment of the supervisor.

RECOMMENDED LITERATURE:

[1] Dzurenda, P., Ricci, S., Casanova, R., Hajny, J., Cika, P.: Secret Sharing-based Authenticated Key
Agreement Protocol, ARES conference 2021.

[2] Zeyad Mohammad, Ahmad Abusukhon, and Thaer Abu Qattam. A survey of authenticated Key Agreement
Protocols for securing IoT. JEEIT conference. IEEE, 425–430, 2019.

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno



ABSTRACT
This thesis deals with the implementation and creation of a cryptographic library and
Graphical User Interface (GUI) for the newly designed "Shamir’s Secret Sharing-based
Authenticated Key Agreement" (ShSSAKA) protocol. The protocol is based on the
principle of AKA (Authentication and Key Agreement), Schnorr’s signature and extended
with Paillier’s scheme to achieve multiple devices deploying signing and authentication.
Benchmarks on a personal computer and RaspberryPi are also presented.

KEYWORDS
Authenticated Key Agreement, Access Control, Cryptography, Proof of Knowledge,
Zero-Knowledge, Shamir’s secret sharing, Paillier scheme, Sigma protocols, Schnorr’s
signature, Constrained Devices, Wearables, Internet of Things, Authentication, Security,
Elliptic Curves

ABSTRAKT
Práce se zabývá implementací a vytvořením kryptografické knihovny a grafického uži-
vatelského rozhraní (GUI) pro nově navržený protokol "Smlouva o autentizačním klíči
na základě Shamirova sdílení tajemnství" (ang. "Shamir’s Secret Sharing-based Authen-
ticated Key Agreement", zkráceně ShSSAKA). Protokol je založený na principu AKA
(autentizovaná domluva klíče), Schnorrově podpisu a rozšířen Paillierovým schématem
pro možnost podílení se více zařízení na podpisu a autentizaci. Prezentovány jsou také
benchmarky na osobním počítači a RaspberryPi.

KLÍČOVÁ SLOVA
Autentizovaná dohoda klíčů, řízení přístupu, kryptografie, důkazy znalosti, nulová zna-
lost, Shamirovo sdílené tajemství, Paillierovo schéma, sigma protokoly, Schnorrův podpis,
omezená zařízení, přenositelná zařízení, internet věcí, ověřování, zabezpečení, eliptické
křivky

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz


ROZŠÍŘENÝ ABSTRAKT
Zadáním této diplomové práce je implementace nově navrženého protokolu “Sm-
louva o autentizačním klíči na základě Shamirova sdílení tajemství” (angl. Shamir’s
Secret Sharing-based Authenticated Key Agreement, zkráceně ShSSAKA). Protokol
je založený na principu Autentizované domluvy klíče (angl. Authentication and Key
Agreement, zkráceně AKA) modifikovaná Schnorrovým podpisem a Paillierovým
schématem pro možnost podílení se více zařízení na podpisu a autentizaci.

V kapitole 1 je krátce představena technologie Internet of Things (IoT, česky
Internet věcí ), která v dnešní době nabývá čím dál větší popularity, díky tomu, že
lidem usnadňuje plnění jejich každodenních úkolů. Od těch nejjednodušších jako je
např. sestavení nákupního seznamu, po ty komplikovanější jako je např. kontrola
zdravotního stavu nebo kontrola znečistění ovzduší. IoT s sebou tedy nese velké
výhody co se týče zvýšení životního standardu lidí. Nese s sebou ovšem i nevýhody
jako je např. narůstající počet zpracovaných a posílaných dat v nezašifrované podobě
nebo množství zařízení, které jsou připojovány k síti, která tato data zpracovává.
Tato zařízení totiž mohou být často jednoduše penetrována, protože velká část z
nich ve své základní formě nemá implementované bezpečnostní mechanismy a u
části z nich to dokonce není možné kvůli omezené výpočetní kapacitě. Další velkou
nevýhodou je absence standardů, které jsou ovšem postupně vytvářeny.

V rámci této kapitoly jsou také krátce představeni tři zástupci IoT frameworků.
Jedná se jmenovitě o Azure IoT Suite z dílny společnosti Microsoft Corporation,
Google Cloud IoT od Google LLC a AWS IoT Core vyvinutý firmou Amazon.com
Inc.

Kapitola 2 představuje kryptografická primitiva, která byla použita při návrhu
protokolu ShSSAKA. Zvláště se jedná o protokoly, které vedly ke vzniku Secret
Sharing-based Authentication Key Agreement (SSAKA) navrženého kolek-
tivem autorů v [9] a na jehož základě je nový protokol postaven.

Nejprve je v této kapitole představen princip důkazů znalosti (angl. Proof
of Knowledge), což je interaktivní mechanismus poskytující výpočetní znalost o
stanoveném tajemství. Tento mechanismus probíhá mezi dvěma stranami – mezi
entitou dokazující znalost tajemství (tedy dokazujícím) a mezi entitou, která ověřuje
správnost výroku (tedy ověřovatelem). Tento princip může fungovat i bez odhalení
samotného tajemství ověřovateli. V takovém případě se jedná o metodu důkazů s
nulovou znalostí (angl. Zero-Knowledge Proof of Knowledge).

Zástupcem principu důkazů s nulovou znalostí může být např. Schnorrův pro-
tokol, což je zástupce rodiny tzv. Σ-protokolů. Je založen na problému diskrétního
logaritmu a používá třícestnou strukturu typu výzva-odpověď. Tento protokol může
být také upraven do jednocestné struktury digitálního podpisu, označovaného jako
Schnorrův podpis, kde je vytvořena dvojice hash a podpisu prokazovaného tajemství,



které jsou hromadně poslány ověřovateli.
Další primitivum, které bylo v rámci kapitoly 2 představeno je autentizované

ustanovení klíče (angl. Authentication Key Agreement, zkráceně AKA). Tyto typy
protokolů jsou v této době masivně používány, protože spojují techniky autentizace
uživatelů a ustanovení symetrického klíče do jedné zahajovací komunikace, čímž se
sníží počáteční složitost komunikace. AKA protokoly jsou založeny na důkazech
s nulovou znalostí a jedná se o třícestný protokol komunikující mezi uživatelem a
serverem.

Následně je představeno schéma sdílení tajemství (angl. Secret Sharing Scheme),
které umožňuje distribuci částí tajemství mezi více účastníků. Jednotlivé části samy
o sobě o původním tajemství nic neprozradí, ale pokud je dán dohromady defino-
vaný počet částí, je možné jej zrekonstruovat. Počet částí, které musí být dány
dohromady, je udán před distribucí. Jedná se tedy o schéma využívající práh 𝑡 a
jsou tak často v odborné literatuře označována dvojicí čísel (𝑡, 𝑛), kde číslo 𝑛 udává
počet zařízení, která byla k distribuci použita. Výhodou tohoto schématu je, že není
třeba použít všechny části nebo jejich určitou kombinaci k tomu, aby bylo tajemství
zrekonstruováno. Zástupcem tohoto schématu je např. Shamirovo sdílení tajem-
ství (angl. Shamir’s Secret Sharing), které k distribuci tajemství používá polynomy
stupně 𝑡 − 1 a k jeho rekonstrukci používá Lagrangovu interpolaci.

Dalším představeným primitivem je Paillierův kryptosystém, což je pravdě-
podobnostní asymetrický algoritmus pro kryptografii veřejného klíče. Jeho hlavní
výhodou je vlastnost aditivní homomorfie, která umožňuje provést součtovou operaci
nad zašifrovanými daty, takže si získal popularitu zvláště ve strukturách, kde je
potřeba zpracovávat data s citlivým obsahem. Hlavní nevýhodu pak představuje
jeho nízská rychlost.

V rámci 28. studentské EEICT konference, jsme provedli a prezentovali opti-
malizaci Paillierova schématu pomocí předpočítávání zvolených hodnot na základě
[17]. V rámci vytvořeného článku jsme implementovali základní Paillierovo schéma
označené jako schéma 1, a schéma 3, které je již jistou optimalizací schématu 1.
Dále bylo implementováno předpočítávání hodnot zprávy a ruchu používaných při
šifrování a předpočítání některých konstantních hodnot, jako je např. 𝑛2 nebo in-
verzní parametr 𝜇 používaný při dešifrování (implementovaný kód je k dispozici na
GitHubu1). Hlavním cílem bylo co nejvíce zrychlit proces šifrování, které je často
používáno v rámci protokolu ShSSAKA navrhovaného touto diplomovou prací.

Jako poslední byl představen protokol smlouvy o autentizačním klíči na
základě sdíleného tajemství (angl. Secret Sharing-based Authentication Key
Agreement), na kterém byl postaven protokol ShSSAKA navrhovaný v rámci této

1EEICT_Paillier repozitář https://github.com/Norted/EEICT_Paillier

https://github.com/Norted/EEICT_Paillier


práce. Tento protokol je založen na schématech AKA rozšířených o Shamirovo sdílení
tajemství a pracuje mezi několika entitami. Těmito entitami jsou server, klient a
definovaný set klientských zařízení. Tento protokol umožňuje distribuci klientského
tajného klíče do dalších klientových zařízení, která se poté podílejí na jeho autenti-
zaci. Tato zařízení mohou být např. wearables (jako třeba chytré hodinky), chytrý
telefon, Raspberry Pi nebo notebook. Nevýhodou tohoto protokolu ovšem je, že pro
získání tajemství je potřeba mít neustále k dispozici všechna zařízení.

V kapitole 3 byly představeny knihovny, které byly použity pro implementaci
kryptografické knihovny navrhovaného protokolu ShSSAKA. Jsou to: kryptografická
knihovna OpenSSL, knihovna GIMP ToolKit (GTK) pro tvorbu GUI a knihovna
cJSON pro parsování JSON souborů.

V kapitole 4 je představeno rozšíření protokolu SSAKA, jehož výsledek byl poj-
menován jako smlouva o autentizačním klíči na základě Shamirova sdílení
tajemství (angl. Shamir’s Secret Sharing-based Authentication Key Agreement),
aby byly tyto dva protokoly odlišeny, i když v obou těchto případech se Shamirovo
schéma používá. Hlavním rozdílem mezi těmito protokoly je, že v průběhu dis-
tribuce tajemství je použito Paillierovo schéma pro možnost podílení se na výpočtu
dílu tajemství všech zařízení, a tudíž je zajištěna možnost použití jakékoli podm-
nožiny kombinací zařízení pro autentizaci.

Kapitola 5 také popisuje implementaci knihovny navrhovaného protokolu za
použití výše zmíněných technologií a prezentuje výsledky benchmarkingu Paillierova
schématu (výsledky získané v rámci studentské EEICT konference) a benchmarkingu
vytvořené knihovny. Kryptografická knihovna ShSSAKA byla vyvinuta v prostřední
Microsoft Visual Studio Code (verze 1.67.2) na operačním systému Ubuntu 64x
20.04.4 LTS (Linux OS) v programovacím jazyce C a je veřejně dostupná pod MIT
licencí na platformě GitHub2.

Repozitář obsahuje dva spustitelné soubory. Soubor main_test.c, jež je určen
pro testování jednotlivých částí knihovny, a soubor GUI.c, který pomocí knihovny
GTK implementuje grafické rozhraní pro uživatelsky přívětivou ukázku funkčnosti
implementované knihovny. Kód knihovny je rozdělen do dvou složek: c_files a
header_files, kde první z nich obsahuje jen zdrojové kódy (tedy soubory s příponou
*.c) a druhá jen hlavičkové soubory (tedy soubory s příponou *.h). Ve složce
header_files je také soubor globals.h, ve kterém jsou obsažena makra ovláda-
jící např. bitovou velikost parametrů (makro BITS), počet zařízení klienta (makro
G_NUMOFDEVICES) nebo stupeň polynomu pro Shamirovu distribuci (makro
G_POLYDEGREE).

Benchmarking byl prováděn na PC s Intel(R) Core(TM) i7-4510U CPU, 2.00
2Simulator-for-ShSSAKA repozitář https://github.com/Norted/Simulator-for-ShSSAKA

https://github.com/Norted/Simulator-for-ShSSAKA


GHz se 4 jádry a operačním systémem Ubuntu 64-bit v20.04.4 LTS a na Raspberry
Pi 3 Modelu B+.

Nejprve jsou uvedeny výsledky měření Paillierova schématu ve verzi 1 a 3 při
použití jednotlivých optimalizačních technik předpočítávání. Z nich je nejúčinnější
předpočítávání hodnoty ruchu, které celé schéma urychlí o jednotky sekund. Zde je
nutno dodat, že výsledky byly získány pouze na výše uvedeném PC.

Následně jsou uvedeny výsledky měření implementované knihovny na obou defi-
novaných zařízeních (tzn. jak na PC, tak i na RPi). Měřily se časové závislosti
jednotlivých částí protokolu na změně počtu celkových zařízení podílejících se na
distribuci sdíleného tajemství a také na změně stupně distribučního polynomu (tzn.
změna minimálního počtu zařízení pro rekonstrukci sdíleného tajemství).

V případě inicializace protokolu (tzn. generování klíčů pro jednotlivá zařízení,
klienta a server) čas generace klíčů rostl jak u zařízení, tak u serveru se zvyšovaným
počtem zařízení. Se zvyšovaným stupněm polynomu však rostl pouze čas gener-
ace zařízení. Je to dáno tím, že v případě, kdy rostl počet zařízení, rostl počet
potřebných výpočtů u Lagrangovy interpolace, která je potřebná pro výpočet klien-
tova veřejného klíče uloženého na serveru, zatím co při zvyšování stupně polynomu
zůstával konstantní.

V případě autentizace a verifikace rostl pouze čas verifikace ať už v případě
zvyšovaného počtu zařízení 𝑛 nebo zvyšování stupně polynomu 𝑡. Čas autentizace
zůstával ve všech případech konstantní.



RYŠAVÁ, Pavla. Secret Sharing Authentication Key Agreement. Brno: Brno University
of Technology, Fakulta elektrotechniky a komunikačních technologií, Ústav telekomu-
nikací, 2022, 82 p. Master’s Thesis. Advised by M.Sc. Sara Ricci, Ph.D.



Author’s Declaration

Author: Bc. Pavla Ryšavá

Author’s ID: 203713

Paper type: Master’s Thesis

Academic year: 2021/22

Topic: Secret Sharing Authentication Key
Agreement

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature‡

‡The author signs only in the printed version.



ACKNOWLEDGEMENT

I would like to thank my supervisor Mrs M.Sc. Sara Ricci, Ph.D. for professional
guidance, consultations, patience and suggestions for my Master thesis. I would also like
to thank my family and friends for making this happen and finally, special thanks to my
fiancé Lukáš for patience, undying support, constant encouragement and many sleepless
nights. I couldn’t have done it without You.



Contents

Introduction 16

1 Internet of Things 18
1.1 IoT frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Used cryptographic primitives 22
2.1 Proof of Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Authentication Key Agreement scheme . . . . . . . . . . . . . . . . . 24
2.3 Secret Sharing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Shamir’s Secret Sharing . . . . . . . . . . . . . . . . . . . . . 28
2.4 Paillier scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Paillier Scheme 1 . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Paillier Scheme 3 . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Homomorphic properties . . . . . . . . . . . . . . . . . . . . . 31

2.5 Secret Sharing-based Authentication Key Agreement . . . . . . . . . 32

3 Used libraries 35
3.1 OpenSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 GTK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 cJSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Proposal of ShSSAKA protocol 38

5 Implementation 41
5.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Application development . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Application visualisation . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Paillier scheme experimental results . . . . . . . . . . . . . . . 47
5.4.2 ShSSAKA experimental results . . . . . . . . . . . . . . . . . 48

Conclusion 54

Symbols and abbreviations 60

List of appendices 63

A Source code Directory Tree 64



B Libraries description 66
B.1 Globals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.2 AKA file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.3 Paillier scheme file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.4 PaiShamir file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.5 ShSSAKA file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.6 Schnorr’s signature file . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.7 Support functions file . . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Figures
1.1 Libelium’s Smarter world . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Schnorr protocol scheme . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Schnorr’s Signature algorithm scheme . . . . . . . . . . . . . . . . . . 24
2.3 Okamoto Σ-protocol scheme . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 AKA protocol scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Paillier Scheme 1 and 3 differences . . . . . . . . . . . . . . . . . . . 31
2.6 SSAKA protocol scheme . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Scheme of ShSSAKA private key computation cycle. . . . . . . . . . . 39
5.1 Simple source code directory diagram . . . . . . . . . . . . . . . . . . 43
5.2 Implemented application GUI . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Paillier encryption overtime graphs . . . . . . . . . . . . . . . . . . . 48



List of Tables
5.1 Average time of encryption, decryption and in total of Paillier . . . . 47
5.2 Average times saved by pre-computation . . . . . . . . . . . . . . . . 48
5.3 Average time of ShSSAKA setup, based on the number of devices 𝑛 . 49
5.4 Average time of ShSSAKA authentication and verification, based on

the number of devices 𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Average time of ShSSAKA setup, based on the polynomial degree 𝑡 . 51
5.6 Average time of ShSSAKA authentication and verification, based on

the polynomial degree 𝑡 – degree 3 to 7 . . . . . . . . . . . . . . . . . 52
5.7 Average time of ShSSAKA authentication and verification, based on

the polynomial degree 𝑡 – degree 8 to 10 . . . . . . . . . . . . . . . . 53



Listings
5.1 Installation of the application Simulator-for-SSAKA . . . . . . . . . . 42
5.2 Function loading the style.css file . . . . . . . . . . . . . . . . . . . 44



Introduction
In the Internet of Things (IoT) [13] era, with a big amount of data flowing through
the internet, there is an increasing emphasis on data secrecy and the security of their
transmission. These features are achieved by symmetric and asymmetric protocols.
Symmetric cryptography ensures mainly data encryption whereas asymmetric cryp-
tography authentication and data integrity. Symmetric cryptography uses the same
key for the encryption and decryption process (i. e. 𝑘𝑒𝑛𝑐 = 𝑘𝑑𝑒𝑐). The asymmetric
cryptography uses two sets of keys – a public key 𝑝𝑘 and a secret private key 𝑠𝑘.
Keys distributed in this way can provide data integrity, i.e. evidence that there
was no unauthorised manipulation of the data, data confidentiality, and identity
authentication of the owner of the keys.

Symmetric and asymmetric protocols use keys to encrypt or sign the protected
data, and this leads to the problem of a secure symmetric key agreement between
the involved parties since asymmetric cryptography does not work with the same
encryption and decryption key. For the key arrangement is usually used the Diffie-
Hellman (DH) protocol. This protocol is based on the discrete logarithm problem
and provides a secure symmetric key agreement. The DH protocol, can be extended
to work on Elliptic Curves (EC). However, one of the main problems still holds:
how do the parties know that there is no “man-in-the-middle” or that the involved
parties are, whom they claim to be?

This moment is where asymmetric cryptography steps in. One of the properties
of the asymmetric type of cryptography is the use of two sets of keys. The secret key
can serve as a kind of hand-written signature, thus, providing proof that the given
party is who they claim to be. The process of the entity identification confirmation
is so-called authentication.

Protocols that use authentication in the process of symmetric key agreement
are so-called Authentication Key Agreement protocols (AKA, or sometimes
marked as Authentication Key Exchange (AKE)) and are currently one of the most
used cryptographic primitives.

This thesis focuses on the extension of a Secret Sharing-based Authentication
Key Agreement (SSAKA) protocol proposed in [9]. Our variant combine the basic
AKA scheme with the Shamir’s Secret Sharing scheme. The authentication of the
involved parties is provided with the Schnorr’s Signature algorithm.

By adding the Shamir’s Secret Sharing to SSAKA protocol, the client’s secret
can be shared among the other involved parties (except the server). This allows
sharing of the key among several devices of a user(s) and, therefore, to set up a
multi-device authentication. The key can be shared in more devices of the same
user and a threshold, e.g., 3 out of 5, will be invoked in the authentication process.

16



This permits to increase in the security of the AKA protocol, where more devices
need to be compromised in order, to “fake” the authentication.

Our extension of SSAKA allows that only a defined number of devices needs to
be involved (not all of those as before). The newly proposed protocol was named
Shamir’s Secret Sharing-based Authentication Key Agreement (ShSSAKA).

For the distribution of the client secret to work and be secure, the Paillier scheme
was included in the computation process as well because of its homomorphic abil-
ity. Since the Paillier scheme is time-demanding, an optimisation, especially of the
encryption, was done. The optimisations were achieved through pre-computation
of certain values as suggested in [17]. In this work, we use the pre-computation of
the message and noise values which are then saved into JavaScript Object Notation
(JSON) files. Also, a pre-computation of certain static values, such as the 𝑛2 or 𝜇,
are pre-computed and are directly saved into the Paillier key-chain.

The implementation of the protocol library is written in C language an is pub-
licly available on GitHub1. For the protocol implementation is used the OpenSSL
library, which is an open-source implementation of the Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) protocols. This library also includes the imple-
mentation of the Big Numbers (BN) data type and also a user-friendly implementa-
tion of the EC. The BN implementation also contains basic mathematical functions
used in cryptographic protocols such as addition, multiplication and modulo.

For the Graphical User Interface (GUI) implementation was used the GIMP
ToolKit (GTK) widget toolkit, which is a C implemented library for (not just) GUIs.
The GUI can be used as a demo-tool for the library use-case. It also demonstrates
the functionality of the protocol and simulates the real-case scenario.

Part of the thesis is dedicated to the bench-marking of the implemented ShSSAKA
protocol library and the optimised Paillier scheme. The main focus in the ShSSAKA
is given to the change of the average time over changing the number of devices 𝑛

or the degree of the polynomial 𝑡. The experimental results were run on a PC and
a RPi. In particular, we used an Intel(R) Core(TM) i7-4510U CPU at 2.00 GHz
with 4 cores and Ubuntu 64-bit v20.04.4 LTS operating system and a Raspberry Pi
3 Model B+.

The optimisation and comparison of the gained bench-mark results of the Paillier
scheme were presented in EEICT Student Conference 2022 [37].

1Simulator-for-ShSSAKA repository on GitHub https://github.com/Norted/
Simulator-for-ShSSAKA

17

https://github.com/Norted/Simulator-for-ShSSAKA
https://github.com/Norted/Simulator-for-ShSSAKA


1 Internet of Things
Internet of Things (IoT) [13] is a term used for a interconnected network of “things”.
The idea is to create a network that will be able to communicate and transfer data
about the usage and environment without human interaction. To IoT network can
be connected almost to anything, either from physical devices such as sensors or
smart devices or through the Internet to people.

The IoT network works with the web-enabled stand-alone (smart) devices, em-
bedded systems (that consists of micro-controller and other parts such as power
source, Graphical Processing Unit (GPU) and memory) and boards (such as Rasp-
berry Pi and Arduino). These devices can collect, send and process such data
acquired from the environment.

Devices can be in general connected to the IoT platform, which integrates data
from the network via either Internet (e. g. through WiFi access point), Bluetooth,
NFC, 4G, 5G or by any other wireless technology. Connected “things” then com-
municate or cooperate on the information gained with each other directly, or they
send data for analysis to the cloud, or they analyse them locally [10].

The communication between the devices can be handled either directly, or through
an IoT Gateway. The latter usually facilitates the device-device or device-cloud con-
nections, performs data pre-processing, filtering and analysis and many other func-
tions such as security management, system diagnostic and configuration manage-
ment. IoT Gateways are mainly used either in a big IoT networks and in scenarios,
that needs the real-time computing, or in the process of critical data (sometimes
referred to as Edge Computing) [30].

The goal is to help people to live “smarter”, i.e., in the means of easier and
somehow safer, because the IoT can fully automate many activities. An example of
the IoT use can be a smart home. Part of the smart home is a smart fridge that
keeps track of the amount of food inside it, and if something is consumed, the fridge
sends the information about the missing product to the shopping list inside another
system without the owner’s interaction. The owner then does not need to keep track
of what’s missing and can have another device that will send the created shopping
list to an online shop at a regular interval to have all the necessary ingredients always
available. If well go further with this example, such automation can be very useful.
For instance, in the hospitals, we would be able to always have important drugs
in stock based on the counted index of use in certain periods like falls when many
people fall ill with flu and there can assure smooth course of such illness epidemics.

However, the use of IoT network does not end just by smart home. IoT is used
also in industry (also referred as Industrial Internet of Things (IIoT)). Example
of usage is monitoring the manufacture processes in order to improve the product

18



quality, or for monitoring the human health and environmental conditions [31].

Fig. 1.1: Libelium’s application of sensors for a Smarter world, adapted from [21].

Also, the idea of the “smart world” is not inconceivable. For example, the Span-
ish corporate Libelium [22] focuses on IoT integration into daily life. They also
offer many IoT solutions for many branches such as agriculture, waste and water
management and smart cities. Moreover, they have their e-shop with their prod-
ucts enabling the proposed schemes, and they manage a blog “Libelium world” that
publishes news in the IoT development. On this blog, they have published an idea
of the application of sensors for a “smart world” depicted in Figure 1.1.

1.1 IoT frameworks
In this section, some of the existing frameworks from known distributors such as
Google LLC or Microsoft are shortly introduced. The mentioned platforms are
Azure IoT Suite, Google Cloud IoT, and Amazon Web Services (AWS) Core.

Azure IoT Suite Platform [8] from Microsoft Corporation is a scenario-focused
solution on one platform. It is a collection of managed platform services in edge

19

https://www.libelium.com/


and cloud with included end-to-end security, operating systems for the devices in
the IoT network and other tools, which can help with the building, deployment and
management of the IoT applications [8].

Google Cloud IoT The Cloud IoT [23] from Google LLC presents a service for
secure connection and data management and ingestion received from globally dis-
persed devices. It supports the Hypertext Transfer Protocol Secure (HTTPS) and
publish-subscribe network protocol Message Queue Telemetry Transport (MQTT)
for message transport between devices. Service runs on Google’s server-less infras-
tructure that allows the almost real-time reaction to changes.

AWS IoT Core Amazon Web Services (AWS) IoT [15] is a platform developed
by Amazon.com Inc. It is presented as easy and secure with the ability to connect
billions of devices to the IoT network and the ability to route trillions of messages
to the services without the infrastructure management. This platform supports
many communication protocols used in IoT such as MQTT (also in the variant over
WSS), HTTPS and Long Range Wide Area Network (LoRaWAN). Moreover, AWS
includes authentication, end-to-end encryption, and implements many other tools
for indigestion of the received data.

1.2 Security analysis
In order to sum up the IoT properties, security analysis can be useful. Accessing
to the processed data can be gained from anywhere at any time which saves time
and money and it can help improve the quality of services and the standard of liv-
ing through automation. However, like any technology, IoT also comes with some
disadvantages, especially with the increasing number of connected devices to the net-
work as the amount of transferred information between the devices, their collection,
storage, management and analysis. Another great disadvantage is the absence of
many standards. Of course, some are already approved and applied like the MQTT,
which is a publisher-subscriber messaging model, LoRaWAN for IoT media access
control, and many other protocols such as WiFi standards, Bluetooth, and HTTPS
[12]. However, there exists an IEEE Internet of Things Initiative that is constantly
working on the improvements in this direction. Nowadays the Initiative works on
some current projects which are e.g., the IEEE 1451-99 that focuses on developing
the standard for harmonisation and security of the IoT devices and systems or the
IEEE P2510 that focuses on the quality measures, parameters and definition for the
implementation of the IoT sensors [3].

20

https://iot.ieee.org/


Another massively discussed topic is the security of the IoT network since there
is not just the thread of the data compromise, but also the threat of active control
of the device itself. If one of the connected devices is compromised, then the whole
network becomes corrupted. In the “hardware level”, there is a gap between the
hardware of the IoT devices themselves and the existing frameworks because of the
requirements each device and platforms have because some frameworks are imple-
mented with standard programming languages, others are programming language-
specific. However, the security on each platform tends to enforce the same security
standards or at least trends. For instance, for secure message transfer between de-
vices, the developers use the SSL/TLS protocol, and they usually support various
cryptographic primitives based on the supported cryptographic libraries or modules
and based on the computation limitations of the involved parties and used commu-
nication protocols. For access control, there are mainly two types of approaches –
using the sandbox techniques or implementation of their own access control model
[1].

Based on these precautions, the IoT architecture of each platform should be se-
cure if the administrators have good practices when setting up the IoT network.
The main problem are Commercial of the Shelf (COTS) microcontrollers which rep-
resents the majority of the devices used in the IoT network. Such deployed COTS
devices are without hardware security support, and they are not taken into consid-
eration in the security architectures used in the frameworks mainly because of the
lack of computing power needed for cryptographic operations. Some architectures
try to avoid this problem by injecting the secret keys into the device, but the keys
are used then throughout the whole lifetime of the device, which is, in the case of
the compromise of the device both in the “hardware level” (in the means of stolen
or physically accessed), and in the “software level” a security problem [19].

21



2 Used cryptographic primitives
The Authentication Key Agreement protocols are one of the most frequently used
cryptographic primitives. They allow the establishment of a secure communication
channel between two or more entities by the agreement on a symmetric session
key. These protocols are a combination of key agreement protocols with the digital
signature algorithms and are thus more secure than, for instance, the DH protocol.
They do not provide just the symmetric key agreement, but they also provide mutual
authentication of the involved parties.

This chapter introduces used cryptographic primitives, that are used in the pro-
posed ShSSAKA protocol introduced in the next chapter.

First, in Section 2.1, the proof of knowledge mechanism used in the basic AKA
protocol is explained. Specifications on the Schnorr protocol and the Okamoto Σ-
protocol are also given. Following, Section 2.2 describes the separate AKA protocol,
that forms the base of the SSAKA.

After that, in section 2.3 is explained, how can be a secret distributed between
more parties and is introduced the Shamir’s Secret Sharing (SSS) protocol, that is
then used in proposed extension to SSAKA protocol. In Section 2.4 is described
the Paillier scheme used during the computation of the ShSSAKA secret keys of
the devices. In Section 2.5 is described the Secret Sharing-based Authentication Key
Agreement (SSAKA) proposed by collective of authors in [9].

2.1 Proof of Knowledge
Proof of knowledge [11] is an interactive cryptographic mechanism providing compu-
tational proof of “knowledge”. This mechanism works between two parties, namely
the prover, that wants to prove his knowledge of some secret to a second party, and
the verifier, that accepts or rejects the veracity of the published statement. This
scheme can also work without the necessity to unravel the secret to the verifier, as
in the case of so-called zero-knowledge proof.

The two-party proof of knowledge, without the knowledge-error, is built upon
two properties:

• Completeness that states that if the send statement to the verifier is true, the
verifier will always accept the proof, and

• Validity that requires that the success probability of knowledge must be
at least as high as the success probability of the prover in convincing the
verifier, as this property guarantees, that some prover without the knowledge
can succeed in convincing the verifier.

22



With the knowledge-error is the validity property replaced with the property
soundness, that states, that there is only a small probability of accepting a wrong
statement by the verifier [4].

To prove various statements, such as those built on the discrete logarithm prob-
lem (also in a specific form), can be verified by using so-called sigma protocols
(sometimes marked as the Σ-protocols). These protocols use a three-way challenge-
response structure with the first step called the commitment. The prover, to verify
some knowledge interact with the verifier as follows:

1. The prover generates parameter 𝑟 from Z*
𝑞 at random, counts parameter 𝑐 =

𝑔𝑟, where 𝑞 and 𝑔 are a published parameters, and sends the parameter 𝑐 to
the verifier.

2. The verifier generates parameter 𝑒 from Z*
𝑞 at random and sends it to the

prover.
3. After receiving parameter 𝑒, the prover counts and sends to the verifier pa-

rameter 𝑧 = 𝑟 + 𝑒𝑤 mod 𝑞, where 𝑤 ∈ Z*
𝑞 is the statement to verify.

The verifier than accepts if the 𝑔𝑧 ≡ ℎ𝑒𝑐 mod 𝑞, where ℎ = 𝑔𝑤, is true [38]. One
of the most used and simplest sigma protocol is the Schnorr protocol, which per-
mits the proof of knowledge of statements regarding the discrete logarithm problem.
Schnorr protocol is depicted on Figure 2.1.

Fig. 2.1: Schnorr protocol scheme with the discrete logarithm based statement 𝑤.

Schnorr protocol has a set of properties:
• Completeness property, that states, as mentioned above, that if the send

statement to the verifier is true, the verifier will always accept the proof,

23



Fig. 2.2: Schnorr’s Signature algorithm scheme.

• Special Soundness property, that states that if the statement is false, then
no cheating prover can deceive the verifier about the veracity of the statement,
and

• Special Honest Verifier Zero-Knowledge property that states that the
verifier does not find out any information about the verified statement, ex-
cept about its authenticity.

The Schnorr protocol modification can provide a signature protocol. The scheme
is then called the Schnorr’s signature algorithm [39]. Such protocol can then provide
the mutual authentication of involved parties. The protocol also provides random-
ness generation such as the challenge values, that protect the algorithms from replay
attacks and provide the ability to perform the DH protocol for the establishment
of a symmetric key. The generated key can then stand for a session key. Schnorr’s
signature algorithm scheme is depicted in Figure 2.2.

There exists also an “extension” of the Schnorr protocol – the Okamoto Σ-
protocol, which allows extending the protocol with the ability to use two private
keys and provision of the witness indistinguishability. Extension scheme is shown in
Figure 2.3 [27].

2.2 Authentication Key Agreement scheme
Authentication Key Agreement (AKA, sometimes referred to as Authentication Key
Exchange (AKE) [5]) is a challenge-response based protocol used to negotiate a
symmetric session key between two mutually proven parties. By “symmetric key” is

24



Fig. 2.3: Okamoto Σ-protocol.

meant a key for a symmetric cryptography that uses the same key for data encryption
and decryption (i. e. the 𝑘𝑒𝑛𝑐 = 𝑘𝑑𝑒𝑐). In AKA is used the concept of Diffie-Hellman
algorithm (DH), which is a cryptographic algorithm for symmetric key agreement
between two parties.

The basis of the protocol is the zero-knowledge-proof, which is a method that
allows veracity of a statement between the two parties (the verifier and the prover),
without uncovering any information held in the declaration. The description of the
proof of knowledge method is in section 2.1.

The user (or the device) can also be an active part of the authentication as the
process can be carried out by using a PIN, password or a Public Key Infrastructure
to prove the identity of the carrier [20]. Among the mutual authentication, this
protocol also allows the collateral of data integrity, information and data encryption
and can protect the agreement from rogue devices. This protocol is nowadays used
in the 3G networks or for the one-time password generation mechanisms for digest
access authentication.

The AKA scheme employs two parties:
• Client – a user with an access to a specific (online) service. To gain access

to the service, the user has to authenticate by providing the access key. The
access key is usually securely stored on the user’s device. The device can be
anything that possesses enough computational power. Such devices can be
wearables, microcontrollers, mobile phones, personal computers etc.

25



• Server – any device, often a powerful computer, that provides the desired
service (or more services). Nowadays, in the time of IoT, are however on the
rise computationally weaker devices such as Raspberry Pi, Nvidia’s Jetson or
other single-board computers that are much cheaper and allow more use-cases,
such as the desired service server.

The algorithm of the AKA consists of three steps in which the client authenticates
to the server and receives the symmetric session key 𝜅. At first, the client sends the
Client Hello message containing:

• the unique Client Identification (CID) assigned to the client at the registration
process,

• cypher suite which specifies the client preferred cryptographic algorithms (can
be listed as all supported algorithms), and

• the client’s challenge, which is usually a randomly generated number protecting
the system against replay attacks.

When the server receives the Client Hello message, it creates a message 𝑌 , which
includes the CID, used cypher suites, clients challenge and confirmation of chosen
cypher suite. Then the server performs the first part of the Server SignVerify
algorithm, which generates the Schnorr’s signature 𝜎 from the created 𝑌 message
and a generated number 𝑟 at random with the server’s secret key and provides in
this way an authentication proof. The random value 𝑟 represents the session key
but also the challenge of the server since it is generated for each session anew. The
𝜎 and 𝑌 are then sent back to the client in the Server Hello message.

After receiving the 𝜎 and 𝑌 , the client performs the Client ProofVerify algo-
rithm for the veracity check of the sent server signature, computes the session key 𝜅

and also the proof of knowledge 𝜋 of the client secret key. The 𝜋 value is than sent
back to the server to the second part of the Server SignVerify algorithm where
does the server compute its own (but the same, if the computed values are correct)
session key 𝜅 and verifies the clients proof of knowledge of its secret key. The above
described algorithm is depicted in Figure 2.4 [9].

The AKA protocol should also meet all following security attributes:
• Mutual authentication that states that both parties authenticate each other

during the protocol run (i.e. through Schnorr’s signature protocol),
• Key compromise impersonation that states that if a long-term key of one en-

tity is compromised, then the entity that gained such key can only impersonate
the compromised entity and no other,

• Parallel session attack that states that knowledge of a previous session
key does not allow the adversary to compromise other session keys, which can
be achieved, for instance, by using randomised session key values,

• Denial of service attack that states that an evil CID and IP address will

26



Fig. 2.4: Basic Authentication Key Agreement protocol scheme.

be black-listed if an evil entity would try to consume the server resources by
sending a fake login,

• Replay attack that states that if an attacker catches the communication
between the parties, then the use of this communication to gain access to the
service will be meaningless,

• Man-in-the-Middle attack that states that the protocol implements such
mechanism that prevents this sort of attack such as the Schnorr’s signature
algorithm [26].

2.3 Secret Sharing scheme
A secret sharing scheme (or secret splitting [18]) is a method used for a secret
distribution between a group of a defined number of parties, where each then stores
a share of the secret. Distributed shares alone are of no use. Such distributed
secret can then be reconstructed by, at least, a defined minimum of parties. Such
minimum is called the threshold and is in most secret sharing schemes marked as 𝑡

and with the number of involved parties can describe the scheme as (𝑛, 𝑡)- or (𝑡, 𝑛)-
threshold schemes. There are two particular cases of trivial sharing, and those are
cases where 𝑡 = 1, where is the whole secret distributed to all participants and where
𝑡 = 𝑛, where to recover a secret, all parties must participate. Of course, there exist
constructions that can reconstruct the given secret without the defined threshold,

27



such as the Secret Sharing Scheme Realising General Access Structure proposed by
Mitsuru Ito, Akira Saito, and Takao Nishizeki [16].

The scheme employs a dealer that owns the secret and gives out the shares
of such secret to 𝑛-number of players under specific conditions, which allows the
secret reconstruction operation from the distributed shares. The requirements for
the secret sharing are two:

• Correctness that states that the distributed secret can reconstruct any au-
thorised set of party ≥ 𝑡, and

• Perfect Privacy that states that every unauthorised set of parties can learn
no theoretical information about the secret from their shares.

Secret sharing schemes can use many cryptographic protocols as building blocks
such as multiparty computation, generalised oblivious transfer, or attribute-based
encryption [9]. Two most known secret sharing schemes are the Shamir’s Secret
Sharing (SSS) which is a simple (𝑡, 𝑛)-threshold scheme and the Blakley’s scheme,
which use the (𝑛−1)-dimensional nonparallel hyperplanes to recover the secret that
is represented by the planes intersection [7].

2.3.1 Shamir’s Secret Sharing

The Shamir’s Secret Sharing (SSS) [40] was formulated by Adi Shamir in 1979 in his
article “How to share a secret”. There he first proposed a simple, ideal and perfect
(𝑡, 𝑛)-threshold scheme based on polynomial interpolation over finite fields in 2D
plane [40]. The share is distribute by the computation of a polynomial of degree
𝑡 − 1. For instance in order to reconstruct the secret with three devices chosen from
the complete set of 𝑛 the distribute polynomial will be

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝜅, (2.1)

where 𝜅 is the secret to distribute and 𝑎 and 𝑏 are at random chosen values from
𝑡 − 1 set.

The distributed share, if distributed correctly, can be in case of SSS recovered
by Lagrange interpolation stated in Equation 2.1.

𝐿(𝑥) :=
𝑘∑︁

𝑗=0
𝑦𝑗ℒ𝑗(𝑥), (2.2)

where 𝑦𝑗 is the 𝑦 coordinate from the given set of 𝑡 + 1 data points (𝑥𝑗, 𝑦𝑗) with no
two values 𝑥𝑗 equal, and ℒ𝑗 is a Lagrange polynomial basis stated in Equation 2.3.

ℒ𝑗(𝑥) :=
∏︁

0≤𝑚≤𝑘
𝑚 ̸=𝑗

𝑥 − 𝑥𝑚

𝑥𝑗 − 𝑥𝑚

= 𝑥 − 𝑥0

𝑥𝑗 − 𝑥0
. . .

𝑥 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑗−1
· 𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1
. . .

𝑥 − 𝑥𝑘

𝑥𝑗 − 𝑥𝑘

, (2.3)

28



The secret, that is distributed is the free coefficient of the polynomial. Considering
that this secret can be recovered, when computing the interpolation for 𝑥 = 0. For
given 𝑡-number of values to find 𝑓(0), the Lagrange interpolation formula can be
simplified as

𝑓(𝜅) =
𝑡−1∑︁
𝑗=0

𝑦𝑗

𝑡−1∏︁
𝑚=0
𝑚 ̸=𝑗

𝑥𝑚

𝑥𝑚 − 𝑥𝑗

. (2.4)

The protocol can also be modified to Elliptic Curves (EC) by generating the
public key as a point on the EC by computing the 𝐺 · 𝑠𝑘, where 𝑠𝑘 is chosen scalar
at random ranging to the order of 𝐺𝐹𝑞, and by choosing the 𝜅 again as a random
point on the EC.

In the implementation of the ShSSAKA demonstrative application we use the
EC modification.

2.4 Paillier scheme
The Paillier cryptosystem [32] is a probabilistic asymmetric algorithm for public-
key cryptography first proposed by Pascal Paillier in 1999 in his paper “Public-
Key Cryptosystems Based on Composite Degree Residuosity Classes”. This paper
offers a trapdoor mechanism from the family of trapdoors in the discrete logarithm
technique based on composite residuosity classes.

This scheme has an additive homomorphic property, i.e., allows adding two ci-
phertexts without corrupting the result. The computation behaves just as if the
corresponding plaintexts are added (without the need of decryption).

However, a drawback of the Paillier cryptosystem is its efficiency which is a
common issue for any scheme based on homomorphic encryption. Several optimi-
sation propositions has already been made. For instance, Paillier himself proposed
a variant, namely Scheme 3, of the original proposal, namely Scheme 1, which uses
abound 𝛼 on exponentiation power size to speed up the computation of the encryp-
tion in particular. Another improving method can be the use of pre-computation of
some values, for instance, the exponentiation of either the message 𝑔𝑚 or the noise
𝑟𝑛 as suggested in the article [17].

The use-cases of the Paillier cryptosystem are, for instance, in electronic voting
[2], machine learning on encrypted data [6], and can be also used in other algorithms
that demand high confidentiality even during processing between mutually authen-
ticated parties because of other features such as the self-binding ability (ability to
change one ciphertext into another without changing the content of the decryption)
[33].

29



2.4.1 Paillier Scheme 1

In Scheme 1 are the public key 𝑝𝑘 and secret key 𝑠𝑘 generated by the following
algorithm. First are chosen two large prime numbers 𝑝 and 𝑞 at random such that
they are independent of each other and that GCD(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1 (this
property is assured if both primes are of equal length). Than is computed the
parameter 𝑛 = 𝑝𝑞 and parameter 𝜆 as LCM(𝑝 − 1, 𝑞 − 1) followed by the generation
of parameter 𝑔 ∈ Z*

𝑛2 at random. At this point must be ensured that 𝑛 divides the
𝑔 by checking the existence of modular multiplicative inverse 𝜇 as

𝜇 = (𝐿(𝑔𝜆 mod 𝑛2))−1 mod 𝑛, (2.5)

where function 𝐿(𝑥) = 𝑥−1
𝑛

where the notation 𝑎
𝑏

denotes the quotient of 𝑎 divided
by 𝑏. The public key 𝑝𝑘 is than the ordered set of parameters 𝑛 and 𝑔 and the secret
key 𝑠𝑘 is the ordered set of parameters 𝜆 and 𝜇.

The encryption of a message 𝑚 is computed as

𝑐 = 𝑔𝑚 · 𝑟𝑛 mod 𝑛2, (2.6)

where 𝑚 must be in range ⟨0, 𝑛) and parameter 𝑟 is a generated number from interval
(0, 𝑛) at random. The decryption process is essentially exponentiation modulo 𝑛2.
The ciphertext is decrypted as

𝑚 = 𝐿(𝑐𝜆 mod 𝑛2) · 𝜇 mod 𝑛. (2.7)

2.4.2 Paillier Scheme 3

In Scheme 3 are the public key 𝑝𝑘 and secret key 𝑠𝑘 generated similarly to the
Scheme 1 only with few modifications. The 𝑛 and 𝜆 parameters are computed the
same as in the case of the Scheme 1. Afterwards is chosen the 𝛼 as the divisor of the
𝜆 parameter with the restriction of 1 ≤ 𝛼 ≤ 𝜆. The parameter 𝑔 is again generated
the same as in the case of the Scheme 1 from Z*

𝑛2 at random but with the restriction
that 𝑔 must be of order 𝛼𝑛.

Another change comes in the encryption process of a message 𝑚 and is com-
puted as

𝑐 = 𝑔𝑚 · (𝑔𝑛)𝑟 mod 𝑛2, (2.8)

where 𝑚 must be in range ⟨0, 𝑛) and parameter 𝑟 is a generated number from
interval (0, 𝛼) at random. The decryption process uses parameter 𝛼 instead of the
parameter 𝜆 as shown in following Equation 2.9.

𝑚 = 𝐿(𝑐𝛼 mod 𝑛2) · 𝜇 mod 𝑛. (2.9)

The differences between the Scheme 1 and Scheme 3 are depicted and highlighted
in Figure 2.5.

30



Fig. 2.5: Paillier Scheme 1 and Scheme 3 description with highlighted differences
in green and red colours.

2.4.3 Homomorphic properties

Important features of the Paillier scheme in general are the additive and multi-
plicative homomorphic properties. Above mentioned abilities allow computing
addition and multiplication of two ciphertexts. The computation behaves just as if
it were operations over the corresponding plaintexts. The mathematical expression
of these properties are as follows:

• homomorphic addition of plaintexts, where decryption of the product of two
ciphers (or a product of a cipher and a generator 𝑔 raised to the power of the
plaintext) results in the addition of the two plaintexts:

– 𝐷(𝐸(𝑚1, 𝑟1) · 𝐸(𝑚2, 𝑟2) mod 𝑛2 = 𝑚1 + 𝑚2 mod 𝑛,
– 𝐷(𝐸(𝑚1, 𝑟1) · 𝑔𝑚2 mod 𝑛2 = 𝑚1 + 𝑚2 mod 𝑛,

• homomorphic multiplication of plaintexts, where decryption of a ciphertext
raised to the power of plaintext results to the multiplication of the two plain-
texts:

– 𝐷(𝐸(𝑚1, 𝑟1)𝑚2 mod 𝑛2 = 𝑚1𝑚2 mod 𝑛,
– 𝐷(𝐸(𝑚2, 𝑟2)𝑚1 mod 𝑛2 = 𝑚1𝑚2 mod 𝑛,
– more generally, where 𝑘 is a constant: 𝐷(𝐸(𝑚1𝑚𝑟1)𝑘 mod 𝑛2 = 𝑘𝑚1

mod 𝑛.
However, there is no known way to compute an encryption of the product of 𝑚1 and

31



𝑚2 without knowing the private key 𝑠𝑘. It is because of the Paillier characteristic
of the encryption of the two messages.

2.5 Secret Sharing-based Authentication Key Agree-
ment

The Secret Sharing-based Authentication Key Agreement (SSAKA) scheme is based
on the AKA protocol described in Section 2.2 extended with the secret sharing
property of the Shamir’s Secret Sharing protocol.

The deployed entities in this protocol are of four types:
• Server and Client, which are the same entities as described in Section 2.2,
• Device, which is an additional device with usually less computational power

than the client’s primary device, such as the microcontrollers, wearables etc.
and are involved in the authentication process to strengthen the security, and

• Party that specifies a device, its password, PIN or Public Key Infrastructure
element, used in the protocol.

The basic AKA protocol is also for the use of SSAKA extended by three new algo-
rithms to modify it for working in the multi-device environment. The new algorithms
are

• the SSAKA Client AddShare algorithm that generates a new client’s secret
key, where each involved secondary device knows only a share of the client’s
secret key,

• the SSAKA Client RevShare algorithm that allows revoking of a device’s share
of the secret from the client’s key, and

• the SSAKA Device Proof algorithm that computes the proof of knowledge of
each share of the secret gained from involved devices.

The scheme of the SSAKA protocol is depicted in Figure 2.6.
The algorithm Client AddShare is running between all of the desired devices,

client and server and as it was stated before. In this algorithm is the clients secret
key used during the authentication 𝑠𝑘𝑐 computed as 𝑠𝑘𝑐 = 𝑠𝑘0 + ∑︀𝐷𝐸𝑉

𝑖=1 𝑠𝑘𝑖, where
the 𝑠𝑘0 is the clients device secret key and the 𝑠𝑘1, . . . , 𝑠𝑘𝐷𝐸𝑉 are the secret keys of
the involved devices. All of the keys are generated in a standard way as a at random
generated 𝑠𝑘𝑖 and 𝑝𝑘𝑖 = 𝑔𝑠𝑘𝑖 .

Corresponding 𝑝𝑘𝑐, that is securely stored on the server is computed as follows

𝑝𝑘𝑐 = 𝑝𝑘𝑐 ·
−

𝑝𝑘𝑐, (2.10)

where the
−

𝑝𝑘𝑐 = ∏︀𝑁𝐸𝑊
𝑖=1 𝑝𝑘𝑖 for all new devices, that are supposed to be added to

the set of possible devices for the future authentication.

32



Fig. 2.6: SSAKA protocol scheme [9].

The algorithm Client RevShare revokes the public and the secret key of a set
of devices, that are no longer wanted for authentication. The above mentioned
equation for the algorithm Client AddShare is only modified for the use of revoking
the public keys as

𝑝𝑘𝑐 = 𝑝𝑘𝑐 ·
−

𝑝𝑘−1
𝑐 , (2.11)

where the parameter
−

𝑝𝑘𝑐 = ∏︀𝑅𝐸𝑉
𝑖=1 𝑝𝑘𝑖 for all devices for revocation.

The algorithm SSAKA Client ProofVerify is slightly modified from the basic
AKA implementation and it consists of three phases:

1. In Phase 1, client computes the parameter 𝑡′
𝑠 = 𝑔𝑠𝑠 ·𝑝𝑘𝑒𝑠

𝑠 , where the parameters
𝑠𝑠 and 𝑒𝑠 are stored in the servers 𝜎 signature. Then the algorithm continues
with the computation of the hash of the message 𝑌 and of the computed 𝑡′

𝑠.
The computed hash then must be equal with the parameter 𝑒𝑠, otherwise the
algorithm exits. If the equation statement is true, then the parameter 𝑡′

𝑠 is
sent to the first part of the DeviceProof algorithm, running on the Devices.
That generates and computes the random challenge 𝑡𝑖 and a part of the session
key 𝜅𝑖.

2. In Phase 2, the client receives the number of shares in need of distribution.
The client computes its session key 𝜅 and creates the hash of the message 𝑌 ,
commitment 𝑡 and session key 𝜅 and sends this hash back to all devices, to the
second part of the DeviceProof algorithm, where does the devices computes
the proof of knowledge 𝑠𝑖 of each desired device client share and sends them
to the third part of the Client ProofVerify algorithm.

33



3. In Phase 3, the client puts all of the computed device proofs with the proof of
knowledge of the client together and sends the “collective proof of knowledge”
to the server.

The rest of the protocol runs as in the case of the Authentication Key Agreement
scheme.

34



3 Used libraries
This chapter introduces the two libraries and one repository, that are used in the
implementation. The first library is OpenSSL, which is an open-source implemen-
tation of some of the cartographic functions such as AES, SHA-2 or RSA and of
the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols used
for the secure communication over the internet. The second library is the GIMP
ToolKit (GTK) widget, that is used for the application GUI implementation. The
used repository is Dave Gamble’s cJSON available on GitHub1.

Both libraries are implemented in ANSI C and both bear certain advantages.
The OpenSSL library can be used within the OS itself through the command line
and PowerShell in the case of Microsoft Windows or Terminal in the case of Linux
or MacOS. The GTK have the ability of Language Bindings, which means, that it
can be connected to any programming language (if correctly set).

3.1 OpenSSL
OpenSSL [29] is a robust toolkit library for cryptographic and secure communica-
tion purposes over the computer network. The library is written in ANSI C and
implements basic cryptographic functions and other supportive utilities such as the
library for mathematical operations over big numbers. OpenSSL also contains the
open-source implementation of the protocols Secure Sockets Layer (SSL) and Trans-
port Layer Security (TLS) and is licensed under the permissive Apache License 2.0
that allows both free and commercial use. Some of the implemented algorithms that
are supported by OpenSSL library are:

• symmetric cryptography:
– Advanced Encryption Standard (AES),
– Data Encryption Standard (DES, also in variant Triple DES),
– Rivest Cipher 4 (RC4),
– Blowfish, etc.

• asymmetric cryptography:
– Rivest-Shamir-Adleman algorithm (RSA),
– Digital Signature Algorithm (DSA),
– Elliptic Curves (EC), etc.

• hash functions:
– Secure Hash Algorithm version 1 (unsecure), 2 and 3 (SHA-1, SHA-2 and

SHA-3),
1Dave Gamble’s cJSON GitHub repository page https://github.com/DaveGamble/cJSON

35

https://github.com/DaveGamble/cJSON


– Message-Digest algorithm version 2, 4 and 5 (unsecure, MD2, MD4 and
MD5)

– Whirpool, etc.
OpenSSL is available for most Unix-like Operation System such as Linux OS,

MacOS), and is available even for Microsoft Windows the Berkeley Software (or
Standard) Distribution OS (BDS) [28]. The official page of the OpenSSL library the
developers also maintain a blog with the news and the list of known vulnerabilities
of the library. The last stable build of this library is version 3.0.0 (to the 29th of
November 2021).

3.2 GTK
GIMP ToolKit (GTK) [43] is an object-oriented widget toolkit for building the GUI
managed by GNOME. It is a free and open-source cross-platform licensed under the
GNU Lesser General Public License which allows use in both free and proprietary
software. The main advantage of this tool widget is its ability of Language Binding.
This property enables the use of multiple programming languages such as C++,
JavaScript, Pearl, Python or Rust, though the widget itself was implemented in
ANSI C [43].

The GTK project is dependable on multiple architectures. The main libraries
the GTK is built upon are:

• GLib, which is a low-level core library providing the non-graphical function-
ality and provides the common GTK data types, main loop implementation,
and a large set of utility functions for strings and general portability across
different platforms,

• Pango, which is a library for international layout and text rendering,
• Cairo, which is a library for 2D graphics with support for multiple output

devices,
• GdkPixbuf, which is a library for loading the graphical assets of the appli-

cation such as icons, and
• ATK, which is a library providing the interface accessibility [42].
The GTK community also maintain good and broad documentation, which is

accessible through the project official site. The GTK is available for all Operation
System (Windows, Linux and MacOS), and the latest stable release is version 4.4.1
(to the 29th of November 2021).

36

https://www.openssl.org/
https://www.gtk.org/


3.3 cJSON
The cJSON repository by Dave Gamble is presented as an ultra-lightweight JSON
parser implemented in ANSI C. The core of the code consists of one source code
with a corresponding header file, which is used within the code and is completely
independent.

This repository allows easier parsing of the JSON file including its creation,
search within and work with the created cJSON object containing the JSON values.

The repository contains also some other useful implemented functions, such as
string or number values comparators or encoders from/to pointer values. These
procedures are implemented in other source file named cJSON-Utils.c with corre-
sponding header file.

The repository can be installed by compiling the code by the directions written
in the README.md file on the GitHub repository page. For the compilation is needed
the cmake tool. If is this repository installed, then is this library included with the
#include <cjson/cJSON> command.

The application implemented in this work is used only the standard cJSON
functions for JSON file parsing so there is no need to install this repository since
it’s included in the source code.

37



4 Proposal of ShSSAKA protocol
The proposed extension of the SSAKA protocol [9] is focused on the fact that the user
needs all of the registered devices to authenticate. The proposed scheme requires
that 𝑡 out of 𝑛 registered devices collaborate to recover the secret key. To do so, we
use the SSS and the Paillier cryptographic scheme to provide a secure distribution
of the client authentication secret key computed as ∑︀𝑁

𝑖=1 𝑠𝑘𝑖, where 𝑠𝑘𝑖 are secret
keys of devices and the client. The created share is then used as a device 𝑁 secret
key.

The polynomial used during the distribution is composed of at random generated
values 𝑑𝑖,𝑡, where 𝑖 is the number of the device and 𝑡 is the threshold value equal to
the degree of the polynomial. For 𝑁 devices is the polynomial stated as

𝑓(𝑥) = (𝑑1,1 + · · · + 𝑑𝑁,𝑡)𝑥𝑡 + (𝑑1,2 + · · · + 𝑑𝑁,2)𝑥𝑡−1 + · · · +

+ (𝑑𝑁,1 + · · · + 𝑑𝑁,𝑡)𝑥 +
𝑁∑︁

𝑖=1
𝜅𝑖,

(4.1)

where the ∑︀𝑁
𝑖=1 𝜅𝑖 is the sum of secret keys of the devices including the client.

The 𝑑1,𝑡, . . . 𝑑𝑁,𝑡 sums and the 𝜅𝑖 sum are achieved by the sum of the computed
𝑑𝑖,1𝑥

𝑡 + · · · + 𝑑𝑖,𝑡𝑥 + 𝜅𝑖 polynomial, where each value 𝑥 (in case of this protocol it is
equal to the public key of the device to which is the share 𝑓(𝑥) computed to) of such
“sub” polynomial is encrypted by Paillier scheme. The encryption than provides the
ability to carry out parts of the authentication 𝑠𝑘 computation on each device, so
none of the secret keys leaves the corresponding device.

The whole process of the secret distribution is carried out in the following step
for the computation of each 𝑓(𝑥𝑗) for 𝑗 = 1, . . . , 𝑛. Let ℎ be equal to 𝑗 + 1:

1. 𝐷ℎ generates random value 𝑟𝑗,ℎ and compute 𝜒𝑗,ℎ = 𝐸𝑛𝑐(𝑥𝑗, 𝑟ℎ),
2. 𝐷ℎ generates random value 𝑣𝑗,ℎ and compute

𝑐ℎ = 𝜒
𝑥𝑡−2

𝑗 *𝑑
(ℎ)
𝑡−1

𝑗,ℎ * 𝜒
𝑥𝑡−3

𝑗 *𝑑
(ℎ)
𝑡−2

𝑗,ℎ * · · · * 𝜒
𝑑

(ℎ)
1

𝑗,ℎ * 𝐸𝑛𝑐(𝑘𝑗, 𝑣𝑗,ℎ)

,
3. if ℎ = 𝑗 + 1, then 𝐷ℎ sends 𝑐ℎ to 𝐷ℎ+1,
4. if ℎ ̸= 𝑗, then set ℎ = ℎ + 1 mod 𝑛 and go to Step (1)
5. if ℎ = 𝑗, then 𝐷𝑗 computes

𝑓(𝑥𝑗) = 𝐷𝑒𝑐(𝑐𝑗−1) + 𝑑
(𝑗)
𝑡−1𝑥

𝑡−1
𝑗 + · · · + 𝑑

(𝑗)
1 𝑥𝑗 + 𝑘𝑗

Above stated “computation circle” is depicted in Figure 4.1.
Once the key-pairs of all devices are computed, than can be created the client’s

authentication key with the use of the interpolation equation stated in Equation 2.4.

38



Fig. 4.1: Scheme of ShSSAKA private key computation cycle for each involved de-
vice.

The interpolation is used during the ShSSAKA Client ProofVerify part of the
algorithm during the computation of the signature 𝑠𝑖 of each involved device. The
signature 𝑠𝑖 is than computed as follows

𝑠𝑖 = 𝑟𝑖 − 𝑒𝑐 · ℐ(𝑠𝑘𝑖) mod 𝑞, (4.2)

where the ℐ(𝑥) is a computation of one part of the ∑︀𝑘−1
𝑗=0 𝑦𝑗ℒ𝑗(0) of the simplified

Lagrange interpolation stated in 2.4, where the 𝑦𝑗 is the devices secret key 𝑠𝑘𝑖.
To proof the Completeness of the proposed algorithm we consider the verification

of the client’s hash 𝑒𝑐 = ℋ(𝑌, 𝑡, 𝜅) with servers reconstructed hash 𝑒𝑠 = ℋ(𝑌, 𝑡′, 𝜅).
In order for the stated hashes, the values 𝑡 and 𝑡′ must equal thus the 𝑡 value must
be correctly reconstructed since the 𝜅 values are computed from the reconstructed

39



𝑡-values of server and client (where client’s 𝑡 value is composed of the 𝑡 values of
devices).

𝑡′ = 𝑔𝑠𝑐 · 𝑝𝑘𝑒𝑐
𝑐 = 𝑔𝑟0−𝑒𝑐·𝑠𝑘0+·+𝑟𝑖−𝑒𝑐·𝑠𝑘𝑖 · 𝑔𝑒𝑐·𝑠𝑘0+···+𝑒𝑐·𝑠𝑘𝑖

= 𝑔
∑︀

𝑟𝑖−𝑒𝑐·
∑︀

𝑠𝑘𝑖 · 𝑔𝑒𝑐·
∑︀

𝑠𝑘𝑖 = 𝑔
∑︀

𝑟𝑖−𝑒𝑐·
∑︀

𝑠𝑘𝑖+𝑒𝑐·
∑︀

𝑠𝑘𝑖

= 𝑔
∑︀

𝑟𝑖 = 𝑡

(4.3)

The 𝜅𝑖 values are computed from the reconstructions of the 𝑡 and 𝑡𝑠 values, then if
the control hashes equal then the server 𝜅 and clients 𝜅 must equal as well. The
above described code is implemented and published in the GitHub repository named
“Simulator-for-ShSSAKA”1.

1Simulator-for-ShSSAKA repository on GitHub https://github.com/Norted/
Simulator-for-ShSSAKA

40

https://github.com/Norted/Simulator-for-ShSSAKA
https://github.com/Norted/Simulator-for-ShSSAKA


5 Implementation
In this chapter, the whole implementation of the protocol ShSSAKA proposed in
this Master thesis is described.

Section 5.2 states the development of the application. Following, Section 5.1
explains the installation of the application and its startup. In the second section
the functionality of the application is described and in the last section are presented
the achieved experimental results.

The application demonstrates the ShSSAKA functionality and is developed on
Ubuntu (Linux OS). Chosen programming language is the C language for its com-
pilation speed and support on many platforms. For the Graphical User Interface
was used the GTK widget toolkit, which is a C widget library. Moreover, GTK is
able of multiple other Language Bindings such as C++, JavaScript, Python3.

For the development was used the Microsoft Visual Studio Code editor (Version
1.67.2), with the C/C++ Extension Pack (Version 1.1.0) developed by Microsoft
[25]. This package contains the following list of extensions:

• C/C++ by Microsoft (Version 1.7.1) for IntelliSense, debugging and code
browsing,

• C/C++ Themes by Microsoft (Version 1.0.0) for User Interface (UI) themes,
• CMake by twxs (Version 0.0.17) for CMake language support,
• CMake Tools by Microsoft (Version 1.9.2) for extended CMake support in the

VS Code,
• Remote Development Extension Pack by Microsoft (Version 0.21.0), that al-

lows to open any folder in a container, remote machine or in Windows Sub-
system for Linux (WSL),

• GitHub Pull Requests and Issues by GitHub (Version 0.32.0) for revision and
management of the pull requests and issues on the GitHub platform,

• Visual Studio Codespaces by Microsoft (Version 1.0.3076), that provides cloud-
hosted development environment,

• LiveShare Extension Pack by Microsoft (Version 0.4.0) for live collaboration,
• Doxygen Documentation Generator by Christoph Schlosser (Version 1.3.2),

that simplifies the generation of the Doxygen Documentation, and
• Better C++ Syntax by Jeff Hykin (Version 1.15.10) for better C++ syntax

visualisation.
All the above stated extensions are available in the Visual Studio Marketplace for
free. They can be downloaded and installed separately or as all-in-one package (un-
der the name “C/C++ Extension Pack”, as it is mentioned above). The installation
of the extensions can be made through the Visual Studio Code Quick Open. This
“code” can be opened inside the VS Code with keyboard shortcut Ctrl+P by en-

41



tering the ext install <author>.<package-name> command which can be found
on the official page of the extension in the Visual Studio Marketplace or through
VS Code build-in module Extensions which is in default shown on the sidebar of the
VS Code application (if not, than it can be accessed through View > Extensions
or by keyboard shortcut Ctrl+Shift+X).

The application is implemented in C due to its speed and complex support on
all thinkable platforms. The source code of the proposed protocol is available on
the GitHub platform1 and is published under the MIT license.

5.1 Installation
To run the implemented application “Simulator-for-ShSSAKA” must be first in-
stalled all the dependencies of the GTK library (if it is desired to use the GUI), the
OpenSSL library (is the only library that needs to be installed in order to use the
library) and the cJSON repository (does not need to be installed since the library is
included in the code). Both the GTK2 and OpenSSL3 libraries have documentation
regarding the installation and building of the libraries on their official websites. In
case of the cJSON4 are the instructions in the README.md file cloned within the
repository.

The application can be built with the Makefile used with the GNU make tool.
The make commands for Windows, Linux OS and MacOS respectively are shown in
Listing 5.1.

Listing 5.1: Installation of the application Simulator-for-SSAKA
1 // Windows make command -- run cmd.exe as admin:
2 PS C:\> make --file Makefile
3
4 // Linux OS and MacOS make command:
5 user@pc:~$ cd /path/to/code/dir
6 user@ pc:~/path/to/code/dir$ sudo . /Linux-install .sh

5.2 Application development
The main file GUI.c of the implemented application is situated in the src directory.
In this file, the whole GUI environment is implemented. The environment im-

1Simulator-for-ShSSAKA repository on GitHub https://github.com/Norted/
Simulator-for-ShSSAKA

2GTK toolkit installation documentation page https://www.gtk.org/docs/installations/
3OpenSSL library installation documentation page https://www.openssl.org/source/
4Dave Gamble’s cJSON README.md file https://github.com/DaveGamble/cJSON/README.md

42

https://github.com/Norted/Simulator-for-ShSSAKA
https://github.com/Norted/Simulator-for-ShSSAKA
https://www.gtk.org/docs/installations/
https://www.openssl.org/source/
https://github.com/DaveGamble/cJSON/README.md


plements mainly button elements to provide the step-by-step ShSSAKA algorithm
functionality demonstration.

The implemented algorithm itself is implemented in the file ShSSAKA.c and is
located in the c_file directory alongside with the implemented Paillier scheme in
file paillier_scheme.c and supportive library file support_functions.c that is
implementing functions necessary mathematical and other procedures for the correct
function of the application. Furthermore are implemented the SSS with the Paillier
modification (file paishamir.c) and Schnorr’s signature with the EC modification
(file schnorrs_signature.c).

Inside the code is also included the cJSON library (source code and header file,
each in corresponding directory), that were downloaded from the cJSON repository
on GitHub mentioned in Section 3.3.

Each of the above mentioned *.c file (except the GUI.c file) have implemented
corresponding header file in the headers directory containing definitions of struc-
tures, global variables and function declarations. All of the common includes, struc-
tures and global variables are situated in the globals.h file. Here are also defined
macros such as the G_NUMOFDEVICES, that defines the maximal number of devices
used during the process or G_POLYDEGREE that defines the minimal number of devices
to reconstruct the secret value.

Fig. 5.1: Simplified diagram of the source code directory.

In the directory, src are also included Makefile for building the application,
icon.jpg, that server as the application icon (only visible at Windows OS) and

43



style.css file which allows to personalise the default GUI GTK elements and ap-
plied in the application through a function shown in Listing 5.2. In the src directory
is also situated the Linux-install.sh file for the installation of the application to-
gether with the required external libraries such as the OpenSSL. In Figure 5.1 is
shown simple directory diagram for better orientation in the code structure with
colour-coded structure. Blue colour states for C language files, violet colour for
header files, red colour for JPG files, orange colour for Makefile, yellow color for
JSON files (used for configurations, pre-computed and saved values), green files for
Shell Script (installation script) and turquoise colour for CSS file.

Listing 5.2: Function loading the style.css file
1 void setCSS () {
2 GtkCssProvider * provider ;
3 GdkDisplay * display ;
4 GdkScreen * screen ;
5
6 provider = gtk_css_provider_new ();
7 display = gdk_display_get_default ();
8 screen = gdk_display_get_default_screen ( display );
9

10 gtk_style_context_add_provider_for_screen (screen ,
11 \acs{gtk} _STYLE_PROVIDER ( provider ),
12 \acs{gtk} _STYLE_PROVIDER_PRIORITY_APPLICATION );
13
14 const gchar * cssFile = "style.css";
15 GError *error = 0;
16
17 gtk_css_provider_load_from_file (provider ,
18 g_file_new_for_path ( cssFile ), &error );
19 g_object_unref ( provider );
20 }

5.3 Application visualisation
The main window of the application is divided into three parts:

• the Spin-Button “Message” providing the 𝑌 parameter instead of the con-
catenation of the chosen cipher suite,

• the Button-Box containing all of the buttons with bindings to the separate
parts of the ShSSAKA algorithm, and the

44



• Label serving as the Console for listing the information about the state of the
protocol.

In the Button-Box, there are several buttons that perform the algorithm. There
are a few elements enabled at the start of the application:

• the Message Spin-Box substituting the agreed cypher suite,
• “Add” Spin-Box, that states, how many devices will be added with ShSSAKA

ClientAddShare button,
• the “Revoke list” Entry box, in which can be stated devices, that should be

removed from the process, and
• Setup button initialising the parameters and keys used in the ShSSAKA algo-

rithm.
The first two buttons provide the ShSSAKA AddShare and ShSSAKA RevShare

parts of the algorithm described in the Section 2.5. Below is button providing the
ShSSAKA Server SignVerify, that performs the verification between client-server
and devices-client.

Between the last two buttons and the ShSSAKA Server SignVerify is situated the
Devices list Entry box and two check-boxes labelled as “Pre-computation”. In the
entry box can be stated, how many devices will be used during the verification (and
during the secret reconstruction), other wise all included devices are used. The Pre-
computation check-boxes define whether the pre-computation of the Paillier scheme
values will be used during the procedure.

And last two buttons are the Keys and Parameters Buttons. Both open message
dialogue window that lists generated keys or the initialised parameters. Parameters
shown in the dialogue are the order of the group 𝑞, chosen generator 𝑔 and the
loaded message parameter 𝑌 .

Entities, that are as default implemented are server, client and three secondary
devices. The number of devices can be changed in both in the ShSSAKA.h file or
through the ShSSAKA ClientAddShare. The described GUI is depicted in Figure
5.2.

5.4 Experimental results
In this chapter, we present the benchmarks and the comparison results from the
implemented protocol. The experimental results were run on a PC and a RPi. In
particular, we used an Intel(R) Core(TM) i7-4510U CPU at 2.00 GHz with 4 cores
and Ubuntu 64-bit v20.04.4 LTS operating system and a Raspberry Pi 3 Model B+

45



Fig. 5.2: Simulator-for-ShSSAKA application Graphical User Interface

5. The compiler version is GCC v9.3.0. The PC results are marked as “PC” and
the results gained on RPi3 are marked as “RPi”.

In Section 5.4.1, we present experimental results of several optimised implemen-
tations of the Paillier cryptosystem. Since the speed of the “plain” cryptosystem is
insufficient for the needs of current protocols, we have modified the cryptosystem
based on the [17] in order to be faster. We have especially concentrated on the en-
cryption procedure since it is used more often in the ShSSAKA. The implemented
code is publicly available on GitHub under the MIT license. Experimental results
were published in [37] within the 28th EEICT Student Conference.

In Section 5.4.2, we present experimental results of the implemented library of
the proposed ShSSAKA protocol. Within this section, we give our main focus to the
change of the average time over changing the total number of devices 𝑛 or changing
the degree of the polynomial 𝑡.

5Raspberry Pi 3 Model B+ official page https://www.raspberrypi.com/products/
raspberry-pi-3-model-b-plus/

46

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/


5.4.1 Paillier scheme experimental results

Experimental results for implemented Paillier scheme were gained only on the above-
defined PC for a DSA modulus 𝑛 of 2048-bit long. Encryption results of one message
were averaged over 100 iterations and 10 different message values were considered.

The application used to obtain the experimental results of the Paillier scheme
is publicly available on GitHub repository6 which was implemented within the 28th
Conference STUDENT EEICT 2022.

Scheme 1
Encryption [ms] Decryption [ms] Total [ms]

Plain 2.172961 1.915783 4.088744
Random 0.036213 2.084682 2.120895
Message 2.137328 1.913080 4.050408

Both 0.008832 2.060453 2.069285

Scheme 3
Encryption [ms] Decryption [ms] Total [ms]

Plain 2.530260 2.387416 4.917676
Random 0.096640 2.514155 2.610795
Message 2.414621 2.359763 4.774384

Both 0.025454 2.521757 2.547211

Tab. 5.1: Average time of encryption, decryption and total time in ms for 2048-bit
length of 𝑛. "Plain" states for in plain mode, "random" for pre-computed noise values,
"message" for pre-computed message values, and "both" for both pre-computations.

Table 5.1 depicts Scheme 1 and Scheme 2 performances averaged over 10 mes-
sages, respectively. Based on the gained results, the decryption speed is for all
variants comparable. This is due to fact that the decryption operations are limited
using the pre-computation optimisation. Regarding the encryption, Scheme 1 is
slightly quicker than Scheme 3 despite expectations. This probably occurs because
of the smaller size of the exponentiation base 𝑟 in Scheme 1 with respect to 𝑔𝑛 in
Scheme 3. The results were obtained with parameter RANGE sets to 100 where the
pre-computed message file has size 64.9 kB for both schemes and the pre-computed
noise files have size 64.3 and 125.9 kB for Scheme 1 and Scheme 3, respectively.

Figure 5.3 depicts Scheme 1 and Scheme 3 computational cost of one message
encryption averaged over 100 times iteration of the considered protocol. From the
analyses, we can deduce that the most computationally intensive operation is noise

6EEICT_Paillier GitHub repository https://github.com/Norted/EEICT_Paillier

47

https://github.com/Norted/EEICT_Paillier


Fig. 5.3: Encryption overtime of both Schemes 1 and 3 with their optimisations.
"Plain" states for in plain mode, "random" for pre-computed noise values, "message"
for pre-computed message values, and "both" for both pre-computations.

computation. This is the main reason for the drastic speedup when the noise pre-
computation is applied to the process.

Optimisation technique Scheme 1 saved time [ms] Scheme 3 saved time [ms]
Noise pre-computation 3.286700 3.660420

𝜇 pre-computation 2.544364 3.100727
Optimisation technique Schemes 1 and 3 saved time [ms]

Message pre-computation 0.039340
𝑛2 pre-computation 0.039340
𝑔𝑛 pre-computation 13.568727

Tab. 5.2: Average time in ms saved during each optimisation of the considered
Paillier schemes.

Table 5.2 contains the saved times in average over 10 protocol executions of the
considered pre-computation technique. Note that 𝜇 and 𝑛2 acceleration allow saving
time during the whole process since they are applied multiple times in the protocols.

5.4.2 ShSSAKA experimental results

Experimental results for implemented ShSSAKA library were gained both on the
above-defined PC and RPi. The procedure was always settled on 10 runs (the

48



number was chosen with respect to RPi performance).
The results were gained on EC named “Secp256k1” and 𝑛 1024-bits big. The

results were achieved by changing the number of used devices 𝑛 or by changing the
polynomial degree 𝑡 (i. e. how many devices are needed to reconstruct the client’s
secret). The list of devices used for the secret reconstruction was chosen at random
from the generated set of devices. Also, the Paillier pre-computation of noise and
message values was used during the process.

Table 5.3 shows the average time in ms that is needed to setup the key-chains,
based on the number 𝑛 of all devices used for the share distribution.

PC
𝑛 Devices [ms] Server [ms] Time [ms]
5 134.832 1.494 537.075
10 572.798 2.947 1074.883
15 1316.103 5.380 1742.135

RPi
𝑛 Devices [ms] Server [ms] Time [ms]
5 3198.331 13.949 20878.600
10 12689.495 26.456 26125.445
15 30068.082 43.671 42696.684

Tab. 5.3: Average time in ms that takes to setup the ShSSAKA key-chains and
corresponding variables on PC and RPi based on the number of overall devices 𝑛.
"Devices" stands for average time to generate all given devices (by global current-
NumOfDevices), "server" stands for average time to generate the server key-chain
and "time" stands for the average time of the whole setup procedure.

Table 5.4 shows the average time in ms to verify and authenticate the number of
involved parties in the process by changing the parameter 𝑛 (the number of overall
devices) on the PC and RPi.

Based on these two tables we can state, that with the rising number of over-
all used devices (raising the 𝑛 value), the time to set up the ShSSAKA protocol
raises. The verification and authentication are constant no matter the number of
used devices to reconstruct the client’s secret. It is related to the fact that com-
puting 𝑓(𝛼) (where 𝛼 is the private key of the device) is heavy since it uses the
Paillier and encryption whereas computing 𝑠𝑖 involves fast computation (since its
only multiplications and inversion operations).

Table 5.3 also shows, that the time to generate server key-chain raises with the
number of devices 𝑛. It is given by the necessity to compute more parts of the sum

49



in the Lagrange interpolation (for each device).

PC RPi
# Auth [ms] Ver [ms] Time [ms] Auth [ms] Ver [ms] Time [ms]

5
de

vi
ce

s 2 1.080 5.063 6.143 19.031 91.187 110.218
3 1.183 6.425 7.608 18.956 120.360 139.316
4 1.119 7.833 8.952 20.436 135.001 155.437

10
de

vi
ce

s

2 1.165 5.010 6.175 11.237 54.2413 65.478
3 1.072 6.719 7.792 11.311 65.8393 77.150
4 1.084 7.679 8.764 10.923 77.8033 88.726
5 1.105 8.940 10.045 11.261 93.3406 104.601
6 1.155 10.236 11.391 11.452 106.3357 117.787
7 1.216 11.787 13.004 11.256 118.2103 129.466
8 1.099 13.180 14.279 11.018 134.8705 145.888
9 1.260 14.722 15.982 11.359 149.7626 161.121

15
de

vi
ce

s

2 1.115 5.183 6.298 12.388 59.231 71.619
3 1.086 6.607 7.693 12.191 72.192 84.383
4 1.070 7.507 8.577 12.199 86.545 98.744
5 1.073 9.627 10.700 12.152 98.902 111.054
6 1.212 10.782 11.994 11.819 114.493 126.312
7 1.081 11.877 12.958 12.377 131.901 144.278
8 1.066 13.011 14.078 12.394 141.784 154.178
9 1.084 15.257 16.341 11.851 158.925 170.776
10 1.244 15.964 17.208 12.404 176.937 189.341
11 1.063 18.194 19.257 12.078 192.839 204.917
12 1.086 19.364 20.450 12.054 205.419 217.472
13 1.143 20.975 22.118 12.185 225.460 237.644
14 1.095 23.100 24.195 11.828 240.571 252.399

Tab. 5.4: Average time in ms that takes to the authentication and verification phases
of the ShSSAKA procedure on PC and RPi based on the overall number of devices
𝑛 used for share distribution. "#" stands for the number of used devices, "Auth"
stands for the average time of the authentication phase, "Ver" stands for the average
time of the verification phase and "Time" stands for the average time of the whole
procedure.

Table 5.5 shows the average time in ms taken to generate the key-chains and
corresponding variables for the ShSSAKA protocol based on the raising polynomial
degree 𝑡 (i.e. the number of devices needed to reconstruct the client’s secret). The
number of devices 𝑛 was fixed on number 15.

50



The time raises with the value of the polynomial degree 𝑡. It is given by the
complexity of the computed polynomials and the number of heavy operations that
need to be done in order to distribute the secret value. Another factor that elongates
the computation cycle is the fact, that each device needs to wait for the previous
device’s result in order to continue computing (i.e. parallel processing is not possi-
ble). The time to set the server key-chain is constant in all of the cases (both on
PC and RPi).

PC
𝑡 Devices [ms] Server [ms] Time [ms]
3 1512.297 5.381 1927.840
4 1696.351 5.398 2138.364
5 1867.251 5.419 2308.336
6 2053.460 5.438 2395.146
7 2235.280 5.431 2638.272
8 2423.738 5.471 2825.779
9 2604.093 5.391 3216.640
10 2780.702 5.450 3174.993

RPi
𝑡 Devices [ms] Server [ms] Time [ms]
3 33114.160 39.129 52997.142
4 39978.608 47.260 61979.679
5 44279.505 44.114 73563.325
6 95079.671 90.164 126338.344
7 103980.745 84.875 140226.446
8 117340.567 89.997 158898.715
9 125602.765 91.029 169098.090
10 135528.451 90.340 163223.281

Tab. 5.5: Average time in ms that takes to setup the ShSSAKA key-chains and cor-
responding variables on PC and RPi based on the polynomial degree 𝑡. "Devices"
stands for average time to generate all given devices (by global currentNumOfDe-
vices), "server" stands for average time to generate the server key-chain and "time"
stands for the average time of the whole setup procedure.

Tables 5.6 and 5.7 show the average time taken to run the authentication and
verification procedure also based on the number of devices used for the secret re-
construction. As can be seen, the time is constant for the authentication phase, but
the time slightly raises for the verification phase with the polynomial degree 𝑡.

51



As can be seen from the tables, the verification time raises with the polynomial
degree 𝑡. It is given by the number of operations that needs to be done in order
to reconstruct the distributed secret of the client. The time of the authentication
phase remains constant.

PC RPi
# Auth [ms] Ver [ms] Time [ms] Auth [ms] Ver [ms] Time [ms]

D
eg

re
e

3

10 1.075 16.324 17.399 13.416 195.111 208.526
11 1.082 17.761 18.843 13.426 212.667 226.094
12 1.155 20.312 21.467 13.419 212.357 225.776
13 1.120 21.102 22.222 12.029 212.869 224.898
14 1.114 23.050 24.164 10.578 240.136 250.714

D
eg

re
e

4

10 1.073 16.578 17.651 13.457 195.541 208.998
11 1.075 17.796 18.871 13.461 212.631 226.092
12 1.076 19.636 20.711 13.614 230.040 243.654
13 1.104 21.431 22.535 13.132 247.291 260.424
14 1.180 23.996 25.176 13.695 270.099 283.794

D
eg

re
e

5

10 1.080 16.226 17.305 12.359 178.381 190.740
11 1.059 18.062 19.120 12.403 194.733 207.136
12 1.099 19.553 20.653 12.383 211.233 223.616
13 1.153 21.304 22.456 12.418 228.086 240.504
14 1.184 22.701 23.886 12.401 245.322 257.723

D
eg

re
e

6

10 1.089 16.013 17.102 24.732 356.870 381.606
11 1.225 17.835 19.060 24.750 389.417 414.167
12 1.222 19.312 20.534 24.792 400.086 424.877
13 1.126 20.736 21.862 21.985 409.101 431.086
14 1.158 22.761 23.919 22.843 440.192 463.035

D
eg

re
e

7

10 1.116 16.235 17.351 23.306 345.303 368.609
11 1.097 18.150 19.247 23.330 368.040 391.370
12 1.168 19.265 20.433 22.492 406.781 429.274
13 1.106 21.729 22.835 23.326 441.871 465.196
14 1.060 22.816 23.876 24.750 475.521 500.270

Tab. 5.6: Average time in ms that takes to the authentication and verification phases
of the ShSSAKA procedure on PC and RPi based on the polynomial degree 𝑡 (in this
table degree 3 to 7). "#" stands for the number of used devices, "Auth" stands for
the average time of the authentication phase, "Ver" stands for the average time of the
verification phase and "Time" stands for the average time of the whole procedure.

52



PC RPi
# Auth [ms] Ver [ms] Time [ms] Auth [ms] Ver [ms] Time [ms]

D
eg

re
e

8

10 1.147 16.753 17.900 24.711 357.192 381.904
11 1.087 17.510 18.597 24.718 389.650 414.367
12 1.062 19.793 20.855 24.782 422.523 447.305
13 1.124 21.282 22.406 24.770 456.907 481.677
14 1.125 23.017 24.142 24.762 491.155 515.917

D
eg

re
e

9

10 1.070 16.664 17.733 24.878 359.426 384.304
11 1.167 18.161 19.327 24.884 392.332 417.216
12 1.116 20.651 21.767 24.895 425.588 450.482
13 1.069 21.076 22.146 24.940 459.358 484.297
14 1.136 22.776 23.912 24.902 493.750 518.653

D
eg

re
e

10

10 1.138 16.248 17.387 24.984 360.286 385.270
11 1.147 18.393 19.540 24.928 392.820 417.748
12 1.092 19.705 20.796 24.971 426.130 451.102
13 1.152 21.243 22.395 24.935 460.221 485.155
14 1.085 23.310 24.395 24.978 494.655 519.633

Tab. 5.7: Average time in ms that takes to the authentication and verification phases
of the ShSSAKA procedure on PC and RPi based on the polynomial degree 𝑡 (in this
table degree 8 to 10). "#" stands for the number of used devices, "Auth" stands for
the average time of the authentication phase, "Ver" stands for the average time of the
verification phase and "Time" stands for the average time of the whole procedure.

53



Conclusion
This Master thesis proposes an extension of SSAKA protocol [9] by combining it
with Shamir’s Secret Sharing scheme. This allows multi-device and multi-factor
authentication during the session key agreement where not all involved devices but
only a threshold of them is needed to authenticate. The use of the SSS protocol
increases the security of the proposed protocol since the client’s secret is distributed
between more parties. These parties can be computationally constrained devices
such as embedded microcontrollers, wearables, smartphones and many others. The
possible attacker would have to acquire more than just one secret key of any involved
device to corrupt the system. Our proposal is based on the homomorphic property
of the Paillier cryptosystem in the computation of the secret keys of the sharing
parties.

Cryptographic library of the proposed ShSSAKA scheme is implemented in C
language and also implements a Graphical User Interface. The GUI can be seen as
a form of a use-case demo, that also shows the functionality of the protocol.

The implementation uses the OpenSSL and GTK widget libraries. The OpenSSL
library’s main purpose is to provide open-source implementation of SSL and TLS
protocols. Moreover, it implements the Big Numbers data type that also includes the
implementation of basic mathematical operations such as addition, multiplication,
division and modulo. This library also implements a use-friendly EC library that is
used in the implementation.

As a part of this work, a bench-marking of the implemented ShSSAKA protocol
library and the optimised Paillier scheme was done. The main focus in the ShSSAKA
was given to the change of the average time over changing the number of devices 𝑛

or the degree of the polynomial 𝑡. The experimental results were run on a PC and
a RPi3 (for the specifications see Section 5.4).

Gained results over the ShSSAKA show, that the time of the verification pro-
cedure raises with both 𝑛 and 𝑡. The average time of the authentication procedure
remains constant in all cases.

The gained values on the Paillier scheme show, that the pre-computation of cer-
tain values can speed up the encryption drastically, especially if the noise value
pre-computation is used. Other pre-computed values such as the message pre-
computation or the 𝑛2 value contribute only slightly to the acceleration. Exper-
imental results of the Paillier scheme were presented at EEICT Student Conference
2022 [37].

54



Bibliography
[1] Mahmoud Ammar, Giovanni Russello, and Bruno Crispo. “Internet of Things:

A survey on the security of IoT frameworks”. In: Journal of Information Secu-
rity and Applications 38 (2018). [cited 18-11-2021], pp. 8–27. issn: 2214-2126.
doi: https://doi.org/10.1016/j.jisa.2017.11.002. url: https:
//www.sciencedirect.com/science/article/pii/S2214212617302934.

[2] Shifa Manaruliesya Anggriane, Surya Michrandi Nasution, and Fairuz Azmi.
“Advanced e-voting system using Paillier homomorphic encryption algorithm”.
In: 2016 International Conference on Informatics and Computing (ICIC).
[cited 17-05-2022]. IEEE. 2016, pp. 338–342.

[3] IEEE Standard Association. IEEE standards activities in the internet of things
(IOT). [online]. [cited 22-11-2021]. Mar. 2020. url: https://standards.
ieee.org/content/dam/ieee- standards/standards/web/documents/
other/iot.pdf.

[4] Mihir Bellare and Oded Goldreich. “On defining proofs of knowledge”. In: An-
nual International Cryptology Conference. [cited 16-05-2022]. Springer. 1992,
pp. 390–420.

[5] Mihir Bellare, David Pointcheval, and Phillip Rogaway. “Authenticated Key
Exchange Secure against Dictionary Attacks”. In: Advances in Cryptology —
EUROCRYPT 2000. Ed. by Bart Preneel. [cited 10-12-2021]. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2000, pp. 139–155. isbn: 978-3-540-45539-4.

[6] Raphael Bost et al. “Machine learning classification over encrypted data”. In:
Cryptology ePrint Archive (2014). [cited 17-05-2022].

[7] Ernest F. Brickell. “Some Ideal Secret Sharing Schemes”. In: Advances in
Cryptology — EUROCRYPT ’89. Ed. by Jean-Jacques Quisquater and Joos
Vandewalle. [cited 30-11-2021]. Berlin, Heidelberg: Springer Berlin Heidelberg,
1990, pp. 468–475. isbn: 978-3-540-46885-1.

[8] Microsoft Corporation. Azure IoT – Internet of Things Platform | Microsoft
Azure. [online]. [cited 27-11-2021]. url: https://azure.microsoft.com/en-
us/overview/iot/.

[9] Petr Dzurenda et al. “Secret Sharing-Based Authenticated Key Agreement
Protocol”. In: The 16th International Conference on Availability, Reliability
and Security. ARES 2021. [cited 30-11-2021]. New York, NY, USA and Vienna,
Austria: Association for Computing Machinery, 2021. isbn: 9781450390514.
doi: 10.1145/3465481.3470057. url: https://doi.org/10.1145/3465481.
3470057.

55

https://doi.org/https://doi.org/10.1016/j.jisa.2017.11.002
https://www.sciencedirect.com/science/article/pii/S2214212617302934
https://www.sciencedirect.com/science/article/pii/S2214212617302934
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/iot.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/iot.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/iot.pdf
https://azure.microsoft.com/en-us/overview/iot/
https://azure.microsoft.com/en-us/overview/iot/
https://doi.org/10.1145/3465481.3470057
https://doi.org/10.1145/3465481.3470057
https://doi.org/10.1145/3465481.3470057


[10] Alexander S. Gillis. What is internet of things (IoT)? [online]. [cited 17-11-
2021]. Aug. 2021. url: https://internetofthingsagenda.techtarget.
com/definition/Internet-of-Things-IoT.

[11] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Com-
plexity of Interactive Proof Systems”. In: SIAM Journal on Computing 18.1
(1989). [cited 10-12-2021], pp. 186–208. doi: 10.1137/0218012. eprint: https:
//doi.org/10.1137/0218012. url: https://doi.org/10.1137/0218012.

[12] Carsten Gregersen. A Complete Guide to IoT Protocols & Standards In 2021.
[online]. [cited 27-11-2021]. Dec. 2020. url: https://www.nabto.com/guide-
iot-protocols-standards/.

[13] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural
elements, and future directions”. In: Future Generation Computer Systems
29.7 (2013). Including Special sections: Cyber-enabled Distributed Computing
for Ubiquitous Cloud and Network Services & Cloud Computing and Scientific
Applications — Big Data, Scalable Analytics, and Beyond. [cited 27-11-2021],
pp. 1645–1660. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.
2013.01.010. url: https://www.sciencedirect.com/science/article/
pii/S0167739X13000241.

[14] Software Testing Help. 10 Best IoT Platforms To Watch Out In 2020. [online].
[cited 27-11-2021]. Nov. 2021. url: https://www.softwaretestinghelp.
com/best-iot-platforms/.

[15] Amazon.com Inc. AWS IoT Core. [online]. [cited 27-11-2021]. 2021. url: https:
//aws.amazon.com/iot-core/.

[16] Mitsuru Ito, Akira Saito, and Takao Nishizeki. “Secret sharing scheme realizing
general access structure”. eng. In: Electronics & communications in Japan.
Part 3, Fundamental electronic science 72.9 (1989). [cited 30-11-2021], pp. 56–
64. issn: 1042-0967.

[17] Christine Jost et al. Encryption Performance Improvements of the Paillier
Cryptosystem. Cryptology ePrint Archive, Report 2015/864. [cited 17-05-2022].
2015. url: https://ia.cr/2015/864.

[18] Anders Karlsson, Masato Koashi, and Nobuyuki Imoto. “Quantum entangle-
ment for secret sharing and secret splitting”. In: Phys. Rev. A 59 (1 Jan.
1999). [cited 16-05-2022], pp. 162–168. doi: 10.1103/PhysRevA.59.162. url:
https://link.aps.org/doi/10.1103/PhysRevA.59.162.

[19] Sjoerd Langkemper. The Most Important Security Problems with IoT Devices.
[online]. [cited 28-11-2021]. url: https://www.eurofins-cybersecurity.
com/news/security-problems-iot-devices/.

56

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://www.nabto.com/guide-iot-protocols-standards/
https://www.nabto.com/guide-iot-protocols-standards/
https://doi.org/https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/https://doi.org/10.1016/j.future.2013.01.010
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://www.softwaretestinghelp.com/best-iot-platforms/
https://www.softwaretestinghelp.com/best-iot-platforms/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iot-core/
https://ia.cr/2015/864
https://doi.org/10.1103/PhysRevA.59.162
https://link.aps.org/doi/10.1103/PhysRevA.59.162
https://www.eurofins-cybersecurity.com/news/security-problems-iot-devices/
https://www.eurofins-cybersecurity.com/news/security-problems-iot-devices/


[20] Laurie Law et al. “An Efficient Protocol for Authenticated Key Agreement”.
In: Designs, Codes and Cryptography 28.2 (Mar. 2003). [cited 16-05-2022],
pp. 119–134. issn: 1573-7586. doi: 10.1023/A:1022595222606. url: https:
//doi.org/10.1023/A:1022595222606.

[21] Libelium. 50 Sensor Applications for a Smarter World. [online]. [cited 18-11-
2021]. Sept. 2020. url: https://www.libelium.com/libeliumworld/top_
50_iot_sensor_applications_ranking/.

[22] Libelium. Libelium " connecting sensors to the cloud: Powering the IOT revo-
lution. [online]. [cited 09-12-2021]. 2021. url: https://www.libelium.com/.

[23] Google LLC. Cloud IoT Core. [online]. [cited 27-11-2021]. Nov. 2021. url:
https://cloud.google.com/iot-core?hl=cs.

[24] Google LLC. Pricing | Cloud IoT Core. [online]. [cited 27-11-2021]. Nov. 2021.
url: https://cloud.google.com/iot/pricing?hl=cs.

[25] Microsoft. C/C++ Extension Pack - Visual Studio Marketplace. [cited 10-12-
2021]. url: https://marketplace.visualstudio.com/items?itemName=
ms-vscode.cpptools-extension-pack.

[26] Zeyad Mohammad, Ahmad Abusukhon, and Thaer Abu Qattam. “A Sur-
vey of Authenticated Key Agreement Protocols for Securing IoT”. In: 2019
IEEE Jordan International Joint Conference on Electrical Engineering and
Information Technology (JEEIT). [cited 1-12-2021]. 2019, pp. 425–430. doi:
10.1109/JEEIT.2019.8717529.

[27] Tatsuaki Okamoto. “Provably Secure and Practical Identification Schemes and
Corresponding Signature Schemes”. In: Advances in Cryptology — CRYPTO’
92. Ed. by Ernest F. Brickell. [cited 30-11-2021]. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1993, pp. 31–53. isbn: 978-3-540-48071-6.

[28] Inc. OpenSSL Foundation. OpenSSL. [online]. [cited 16-05-2022]. url: https:
//www.openssl.org/docs/manmaster/man7/.

[29] Inc. OpenSSL Foundation. OpenSSL – Cryptography and SSL/TSL Toolkit.
[online]. [cited 09-12-2021]. 2021. url: https://www.openssl.org/.

[30] Oracle. What is an IoT Gateway? [online]. [cited 17-11-2021]. May 2017. url:
https://openautomationsoftware.com/open-automation-systems-blog/
what-is-an-iot-gateway/.

[31] Oracle. What is the Internet of Things (IoT)? [online]. [cited 17-11-2021]. Nov.
2021. url: https://www.oracle.com/cz/internet-of-things/what-is-
iot/.

57

https://doi.org/10.1023/A:1022595222606
https://doi.org/10.1023/A:1022595222606
https://doi.org/10.1023/A:1022595222606
https://www.libelium.com/libeliumworld/top_50_iot_sensor_applications_ranking/
https://www.libelium.com/libeliumworld/top_50_iot_sensor_applications_ranking/
https://www.libelium.com/
https://cloud.google.com/iot-core?hl=cs
https://cloud.google.com/iot/pricing?hl=cs
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools-extension-pack
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools-extension-pack
https://doi.org/10.1109/JEEIT.2019.8717529
https://www.openssl.org/docs/manmaster/man7/
https://www.openssl.org/docs/manmaster/man7/
https://www.openssl.org/
https://openautomationsoftware.com/open-automation-systems-blog/what-is-an-iot-gateway/
https://openautomationsoftware.com/open-automation-systems-blog/what-is-an-iot-gateway/
https://www.oracle.com/cz/internet-of-things/what-is-iot/
https://www.oracle.com/cz/internet-of-things/what-is-iot/


[32] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes”. In: Advances in Cryptology — EUROCRYPT ’99. Ed. by
Jacques Stern. [cited 10-12-2021]. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1999, pp. 223–238. isbn: 978-3-540-48910-8.

[33] Pascal Paillier. “Public-key cryptosystems based on composite degree residu-
osity classes”. In: International conference on the theory and applications of
cryptographic techniques. [cited 1-12-2021]. Springer. 1999, pp. 223–238.

[34] G2 Bussiness Software Reviews. AWS IoT Core reviews. [online]. [cited 27-11-
2021]. url: https://www.g2.com/products/aws-iot-core/reviews.

[35] G2 Bussiness Software Reviews. Azure Iot Central Reviews. [online]. [cited
27-11-2021]. url: https://www.g2.com/products/azure-iot-central/
reviews.

[36] G2 Bussiness Software Reviews. Google Cloud IoT Core reviews. [online]. [cited
27-11-2021]. url: https://www.g2.com/products/google- cloud- iot-
core/reviews.

[37] Sara Ricci and Pavla Ryšavá. “Paillier Cryptosystem Optimisations for Ho-
momorphic Computation”. In: Accepted in the 28th Conference STUDENT
EEICT 2022. Vysoké učení technické v Brně, Fakulta elektrotechniky a komu-
nikačních technologií. 2022.

[38] C. P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In:
Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard.
[cited 16-05-2022]. New York, NY: Springer New York, 1990, pp. 239–252.
isbn: 978-0-387-34805-6.

[39] C. P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In:
Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard.
[cited 10-12-2021]. New York, NY: Springer New York, 1990, pp. 239–252.
isbn: 978-0-387-34805-6.

[40] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (Nov. 1979).
[cited 1-12-2021], 612–613. issn: 0001-0782. doi: 10.1145/359168.359176.
url: https://doi.org/10.1145/359168.359176.

[41] Eldar Sultanow and Alina Chircu. “A Review of IoT Technologies, Standards,
Tools, Frameworks and Platforms”. In: The Internet of Things in the Industrial
Sector: Security and Device Connectivity, Smart Environments, and Industry
4.0. Ed. by Zaigham Mahmood. [cited 18-11-2021]. Cham: Springer Interna-
tional Publishing, 2019, pp. 3–34. isbn: 978-3-030-24892-5. doi: 10.1007/978-
3-030-24892-5_1. url: https://doi.org/10.1007/978-3-030-24892-
5_1.

58

https://www.g2.com/products/aws-iot-core/reviews
https://www.g2.com/products/azure-iot-central/reviews
https://www.g2.com/products/azure-iot-central/reviews
https://www.g2.com/products/google-cloud-iot-core/reviews
https://www.g2.com/products/google-cloud-iot-core/reviews
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-030-24892-5_1
https://doi.org/10.1007/978-3-030-24892-5_1
https://doi.org/10.1007/978-3-030-24892-5_1
https://doi.org/10.1007/978-3-030-24892-5_1


[42] The GTK Team. Building GTK. [online]. [cited 28-11-2021]. url: https :
//docs.gtk.org/gtk4/building.html.

[43] The GTK Team. The GTK Project - A free and open-source cross-platform
widget toolkit. [online]. [cited 28-11-2021]. url: https://www.gtk.org/.

59

https://docs.gtk.org/gtk4/building.html
https://docs.gtk.org/gtk4/building.html
https://www.gtk.org/


Symbols and abbreviations
2D 2-Dimensional

3G Third Generation of broadband cellular network

4G Fourth Generation of broadband cellular network

5G Fifth Generation of broadband cellular network

AES Advanced Encryption Standard

AI Artificial Intelligence

AKA Authentication Key Agreement

AKE Authentication Key Exchange

AWS Amazon Web Services

BDS Berkeley Software (or Standard) Distribution

BN Big Numbers

CID Client Identification

COTS Commercial of the Shelf

CSS Cascading Style Sheet

DH Diffie-Hellman

DSA Digital Signature Algorithm

DES Data Encryption Standard

EC Elliptic Curves

GB Giga Byte

GCD Greatest Common Divisor

GNU recursive acronym for "GNU’s Not Unix!"

GPU Graphical Processing Unit

GTK GIMP ToolKit

GUI Graphical User Interface

60



HTTPS Hypertext Transfer Protocol Secure

IBM International Business Machines Corporation

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IIoT Industrial Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LCM Least Common Multiple

LLC Limited liability company

LoRaWAN Long Range Wide Area Network

MB Mega Byte

MD Message-Digest algorithm

MQTT Message Queue Telemetry Transport

NFC Near Field Communication

OS Operation System

RC4 Rivest Cipher 4

RPi Raspberry Pi

RSA Rivest-Shamir-Adleman algorithm

SHA Secure Hash Algorithm

SSAKA Secret Sharing-based Authentication Key Agreement

SSL Secure Sockets Layer

SSS Shamir’s Secret Sharing

ShSSAKA Shamir’s Secret Sharing-based Authentication Key Agreement

TB Tera Byte

TLS Transport Layer Security

61



UI User Interface

VS Code Microsoft Visual Studio Code

WSS Web Soil Survey

WSL Windows Subsystem for Linux

62



List of appendices

A Source code Directory Tree 64

B Libraries description 66
B.1 Globals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.2 AKA file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.3 Paillier scheme file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.4 PaiShamir file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.5 ShSSAKA file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.6 Schnorr’s signature file . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.7 Support functions file . . . . . . . . . . . . . . . . . . . . . . . . . . 77

63



A Source code Directory Tree
For better navigation through the implemented code is in this chapter viewed the
directory tree of the whole ShSSAKA application. The source code of the application
was created in the Microsoft Visual Studio Code editor (version 1.62.3) with installed
extension pack for the C language code development, the C/C++ Extension Pack
(version 1.0.0) developed by Microsoft. This VS Code package is described in 5.

Along with the src directory, there is also included the .vscode directory, that
contains the JSON files, which setts the VS Code environment for the compilation,
launch and debugging of the C code. The ShSSAKA algorithm itself is implemented
in the ShSSAKA.c file. Implementation also include a Makefile for the code compi-
lation and a shell script for Linux OS.

/.........................................the root directory of the attached archive
.vscode......................VS Code directory with *.json configuration files

c_cpp_properties.json
launch.json
settings.json
tasks.json

src ................................................ main source code directory
c_files............C files directory with the algorithm and support libraries

AKA.c.....................................................AKA library
paillier_scheme.c...........Paillier library (Scheme 1 implementation)
paishamir.c....................SSS protocol modified by Paillier scheme
schnorrs_signature.c......Schnorr’s signature protocol modified to EC
ShSSAKA.c............................................ShSSAKA library
support_functions.c. ....... library containing various functions for the
protocols

headers.......................................directory with C header files
AKA.h
globals.h..........header file containing common and global parameters
openssl_bn.h
paillier_scheme.h
paishamir.h
schnorrs_signature.h
ShSSAKA.h

precomputed_values
precomputed_message.json................pre-computed message values
precomputed_noise.json.....................pre-computed noise values

GUI.c......................................................GUI source file
icon.jpg...............................................application icon file
keychain.json............saved Paillier key-chain used for pre-computations
Linux-install.sh.a bash script for the application installation on Linux OS
main_test.c ....... file containing testing blocks of each implemented library

64



Makefile.............................Makefile for code compilation by make
style.css......................CSS file for GUI visualisation customisation

.gitignore............GIT file defining files to ignore during upload to GitHub
README.md. ...... GIT file containing essential information about the application

65



B Libraries description

B.1 Globals
Macros

• NUM_THREADS – number of threads for pre-computations
• G_NUMOFDEVICES – total number of devices
• G_POLYDEGREE – minimum of devices to reconstruct the secret (polyno-

mial degree)
• BUFFER – size of a buffer for strings
• BITS – bit size of generated values
• MAXITER – maximal number of iterations
• RANGE – range of pre-computed values from 0

Dependent libraries stdio.h, stdlib.h, time.h, math.h, limits.h, string.h, unistd.h,
openssl/bn.h, openssl/sha.h, openssl/ec.h, openssl/obj_mac.h, cjson/cJSON.h

Defined structures
• Paillier structures:

– struct paillier_PrivateKey – P, Q, 𝜆 and 𝜇 values
– struct paillier_PublicKey – N, N_SQ (𝑛2) and G values
– struct paillier_Keychain – Paillier PK and SK structures

• struct ServerSign – TAU_S (𝜏𝑠) value and KAPPA (𝜅) point
• struct ClientProof – TAU_C (𝜏𝑐) value, KAPPA (𝜅) point and Schnorr’s Sig-

nature structure
• struct DeviceProof – signature S_I (𝜎𝑖) and point KAPPA_I (𝜅𝑖)
• Schnorr structures:

– struct schnorr_Keychain – EC GROUP variable and EC key-pair for
Schnorr’s Signature

– struct schnorr_Signature – hash, signature (𝜎), random r and point
C_PRIME (𝐶 ′)

• struct aka_Keychain – Schnorr key-chain and ID value
• struct shssaka_Keychain – SK, PK, kappa (𝜅) and ID value
• struct globals – Schnorr’s key-chain and ID counter value
Defined global variables:
• struct globals g_globals – holds global values (especially the EC group and

idCounter)
• global key-chains:

66



– struct shssaka_Keychain g_shssaka_devicesKeys[G_NUMOFDEVICES]
– ShSSAKA keychain for client (0) and devices (1 to G_NUMOFDEVICES)

– struct aka_Keychain g_serverKeys – server keychain (both for AKA and
ShSSAKA)

– struct aka_Keychain g_aka_clientKeys – client keychain for AKA
• unsigned int currentNumberOfDevices – holds the current number of used de-

vices
• struct paillier_Keychain g_paiKeys – global Paillier key-chain
• EC_POINT *pk_c – ShSSAKA client’s public key
• pthread_t threads[NUM_THREADS] – threads field used for pre-computation
• BIGNUM *g_range – global range value for pre-computation (created from

RANGE macro)
• unsigned int paillier_inited – value 0 or 1, marks, whether was the Paillier

key-chain initiated
• unsigned int pre_noise – value 0 or 1, marks, whether the pre-computed value

of noise should be used
• unsigned int pre_message – value 0 or 1, marks, whether the pre-computed

value of message should be used
• const char *restrict file_keychain – holds the path to the saved Paillier key-

chain used for the pre-computations
• const char *restrict file_precomputed_noise – holds the path to the pre-com-

puted noise values
• const char *restrict file_precomputed_message – holds the path to the pre-

computed message values
• cJSON *json_noise – holds the parsed noise JSON file after the application

start
• cJSON *json_message – holds the parsed message JSON file after the appli-

cation start

B.2 AKA file
Dependent libraries: support_functions.h, schnorrs_signature.h, globals.h

aka_setup
• input: none
• output: unsigned int

Initialise the AKA protocol by allocating the memory and initialising the key-chains
of server and client (both uses struct aka_Keychain). Returns 1 on success, 0
otherwise.

67



aka_serverSignVerify
• input:

– BIGNUM *Y – numeric message value
– struct ServerSign *server – structure holding the server’s point 𝜅 and 𝜎

(signature) value
• output: unsigned int

Simulates the communication between the server and client. Computes the server’s
Schnorr’s signature and "sends" the message Y and its signature 𝜎𝑆 to the client
(aka_clientProofVerify is carried out). After the client device "sends" the value of
𝜏𝐶 and point 𝜅𝐶 back, carries out the verification of the server’s signature 𝜎𝑆. If
the verification proceeds ie. 𝜏𝑆 is set to 1 by Schnorr’s verification procedure, the
protocol ends successfully. Returns 1 on success, 0 otherwise.

aka_clientProofVerify
• input:

– BIGNUM *Y – numeric message value
– struct schnorr_Signature *server_signature – structure holding the val-

ues created during the server’s signing procedure; holds the created hash,
signature 𝜎𝑆, generated random 𝑟 and point 𝐶 ′

– struct ClientProof *client – structure holding the 𝜏𝐶 value, 𝜅𝐶 point and
client’s Schnorr’s Signature structure

• output: unsigned int
Carries out the client’s computation part of the communication simulation. First is
verifying the server’s signature. If the verification proceeds, the client’s signature of
the message is created and the client’s part of the computation ends. Returns 1 on
success, 0 otherwise.

init_aka_mem
• input: struct aka_Keychain *keychain
• output: unsigned int

Initialize the given aka_Keychain. This procedure sets the ID of the device with
the help of the idCounter (in the globals structure), allocates the memory for the
keys and generates the Schnorr’s key-chain. Returns 1 on success, 0 otherwise.

free_aka_mem
• input: struct aka_Keychain *keychain
• output: none

Frees the memory used by the given key-chain.

68



aka_keyPrinter
• input: struct aka_Keychain *key
• output: none

Prints out the given key-chain into the console.

B.3 Paillier scheme file
Dependent libraries: support_functions.h, globals.h

paillier_generate_keypair
• input: struct paillier_Keychain *keychain
• output: unsigned int

Generates random P and Q primes and computes generator G with the procedure
named gen_pqg_params. Also pre-computes the 𝜇 value used in the Paillier decryp-
tion procedure.

paillier_encrypt
• input:

– struct paillier_PublicKey *pk – public key structure used for the encryp-
tion

– BIGNUM *plain – plaintext for the encryption
– BIGNUM *cipher – final ciphertext
– BIGNUM *precomp_message – holds the value of the pre-computed mes-

sage (if a global pre_message is set to 1)
– BIGNUM *precomp_noise – holds the value of the pre-computed noise

(if a global pre_noise is set to 1)
• output:unsigned int

First is checked whether the length of the message is smaller than the length of the
N value. Then the Paillier encryption is performed. If the pre-computed values are
not set (are set to 0) then the values are computed.

paillier_decrypt
• input:

– struct paillier_Keychain *keychain – Paillier key-chain with the public
and private values

– BIGNUM *cipher – ciphertext for decryption
– BIGNUM *plain – decrypted plaintext

• output: unsigned int
Performs the Paillier decryption procedure. Returns 1 on success, 0 otherwise.

69



init_paillier_keychain
• input: struct paillier_Keychain *keychain
• output: none

Initialise the given paillier_Keychain. This procedure allocates memory for the
public key structure (paillier_PublicKey) – generator G, prime N, and N_SQ. This
procedure allocates memory for the private key structure (paillier_PrivateKey) – 𝜆

and 𝜇 value, prime P and prime Q.

free_paillier_keychain
• input: struct paillier_Keychain *keychain
• output: none

Frees the memory used by the given key-chain.

homomorphy_add
• input:

– struct paillier_PublicKey *pk – Paillier public key values
– BIGNUM *enc_1 – first encrypted value to be summed
– BIGNUM *enc_2 – second encrypted value to be summed
– BIGNUM *res – resulting value

• output: unsigned int
Procedure implementing the addition of two encrypted values using the additive
homomorphic property of Paillier. Returns 1 on success, 0 otherwise.

homomorphy_add_const
• input:

– struct paillier_PublicKey *pk – Paillier public key values
– BIGNUM *enc_value – encrypted value
– BIGNUM *constant – constant which will be added to the encrypted

value
– BIGNUM *res – resulting value

• output: unsigned int
Procedure implementing the addition of a constant to an encrypted value using the
additive homomorphic property of Paillier. Returns 1 on success, 0 otherwise.

homomorphy_mul_const
• input:

– struct paillier_PublicKey *pk – Paillier public key values
– BIGNUM *enc_value – encrypted value

70



– BIGNUM *constant – constant which will be multiplied with the en-
crypted value

– BIGNUM *res – resulting value
• output:unsigned int

Procedure implementing the multiplication of a constant to an encrypted value using
the additive homomorphic property of Paillier. Returns 1 on success, 0 otherwise.

B.4 PaiShamir file
Dependent libraries: paillier_scheme.h, support_functions.h, globals.h

paiShamir_distribution
• input: struct paillier_Keychain *paikeys
• output: unsigned int

Carries out the distribution of the client’s secret through out all of the devices (uses
g_shssaka_devices[] field). Uses the Shamir’s Secret Sharing principles modified
with Paillier. Returns 1 on success, 0 otherwise.

paiShamir_get_ci
• input:

– struct paillier_Keychain *paikeys – Paillier key-chain used during the
Shamir’s Secret Sharing

– BIGNUM *kappa_i – secret value (private key of a device)
– BIGNUM *d[G_POLYDEGREE] – randomly generated values
– BIGNUM *xs[G_POLYDEGREE] – pre-computed powers of the public

key of a device
– BIGNUM *mod – used modulo value
– BIGNUM *ci – resulting value

• output: unsigned int
Procedure implementing the computation of encrypted device polynomial which is
one part for the Shamir’s Secret Sharing. Returns 1 on success, 0 otherwise.

paiShamir_get_cN_prime
• input:

– struct paillier_Keychain *paikeys – Paillier key-chain used during the
Shamir’s Secret Sharing

– BIGNUM *pre_cN – resulting CI of the previous device
– BIGNUM *cN – resulting CI of the current device
– BIGNUM *cN_prime – resulting value

71



• output: unsigned int
Adds the result of the polynomial of the previous device to the current result. Re-
turns 1 on success, 0 otherwise.

paiShamir_get_c
• input:

– BIGNUM *kappa – secret value (private key of a device)
– BIGNUM *mod – used modulo value
– BIGNUM *xs[G_POLYDEGREE] – pre-computed powers of the public

key of a device
– BIGNUM *d[G_POLYDEGREE] – randomly generated values
– BIGNUM *c – resulting value

• output: unsigned int
Computes the polynomial of the device to which is the secret computed. Returns 1
on success, 0 otherwise.

paiShamir_get_share
• input:

– struct paillier_Keychain *paikeys – Paillier key-chain used for the de-
cryption of the CN_PRIME (𝐶 ′

𝑁)
– BIGNUM *cN_prime – encrypted value of summed encrypted polyno-

mial results
– BIGNUM *c – un-encrypted result of a polynomial of current device
– BIGNUM *mod – used modulo value
– BIGNUM *share – resulting value

• output: unsigned int
Gets the part of the distributed secret. Decrypts the CN_PRIME (𝐶 ′

𝑁) value and
adds the C. Result is then saved to SHARE value. Returns 1 on success, 0 otherwise.

paiShamir_interpolation
• input:

– unsigned int *devices_list – list of the used devices for the secret recon-
struction

– unsigned int size_of_list – size of the list with the used devices
– BIGNUM *mod – used modulo value
– BIGNUM *secret – reconstructed secret

• output: unsigned int

72



Procedure for reconstructing the previously distributed secret. In the beginning is
checked, if there are enough devices to reconstruct the secret value. Returns 1 on
success, 0 otherwise.

part_interpolation
• input:

– unsigned int *devices_list – list of the used devices for the secret recon-
struction

– unsigned int size_of_list – size of the list with the used devices
– unsigned int current_device – index from the list containing the current

device
– BIGNUM *mod – used modulo value
– BIGNUM *sk_i —- gained part of the reconstructed secret value

• output: unsigned int
Computes one part of the interpolation for each used device. Returns 1 on success,
0 otherwise.

B.5 ShSSAKA file
Dependent libraries: support_functions.h, schnorrs_signature.h, paishamir.h, pail-
lier_scheme.h, AKA.h, globals.h

shssaka_setup
• input: none
• output: unsigned int

Initialise the key-chains (g_serverKeys, g_deviceKeys[]). Allocates the memory and
generate the public keys, IDs, distributes the secret and computes the clients public
key. Returns 1 on success, 0 otherwise.

shssaka_KeyGeneration
• input: struct shssaka_Keychain *shssaka_Keychain
• output: unsigned int

Procedure generating random values as a public key of a given device keychain and
assignment of the ID (based on the idCounter value from the globals structure).
Returns 1 on success, 0 otherwise.

shssaka_ClientAddShare
• input: unsigned int num_of_new_devices
• output: unsigned int

73



Generates given number of new devices, generates their values and saves them to
the g_shssaka_devices[] field. Afterwards is recomputed the client’s public key.
Returns 1 on success, 0 otherwise.

shssaka_ClientRevShare
• input:

– unsigned int *rev_devices_list – list of devices containing the index values
from the g_shssaka_devices[], that should be revoked

– unsigned int list_size – size of the revocation list
• output: unsigned int

Revokes the given devices from the devices list, redistributes the client’s secret and
recomputes the client’s public key. Returns 1 on success, 0 otherwise.

shssaka_akaServerSignVerify
• input:

– unsigned int *list_of_used_devs – list of devices containing the index
values from the g_shssaka_devices[], that should be used during the
signing procedure

– unsigned int size – size of the used devices list
– BIGNUM *Y – numeric message value
– struct ServerSign *server – structure holding the server’s point 𝜅 and 𝜎

(signature) value
• output: unsigned int

Procedure simulates the communication between the server, client and devices.
Computes the server’s Schnorr’s signature and "sends" the message Y with it’s sig-
nature 𝜎𝑆 to the client (shssaka_clientProofVerify is carried out). After the
client’s device "sends" the computed value 𝜏𝐶 and point 𝜅𝐶 back, carries out the
verification of the client’s signature 𝜎𝐶 . If the verification proceeds ie. 𝜏𝑆 is set to
1 by the Schnorr’s verification procedure, the protocol ends successfully. Returns 1
on success, 0 otherwise.

shssaka_clientProofVerify
• input:

– unsigned int *list_of_used_devs – list of devices containing the index
values from the g_shssaka_devices[], that should be used during the
signing procedure

– unsigned int size – size of the used devices list
– BIGNUM *Y – numeric message value

74



– struct schnorr_Signature *server_signature –– structure holding the val-
ues created during the server’s signing procedure; holds the created hash,
signature"𝜎𝑆, generated random 𝑟 and point 𝐶 ′

– struct ClientProof *client – structure holding the 𝜏𝐶 value, point 𝜅𝐶 and
client’s Schnorr’s Signature structure

• output: unsigned int
Carries out the clients computation part of the communication simulation. First is
verified the server’s signature. If the verification proceeds, the client’s signature of
the message is created with the help of the other devices, that each creates a part
for the 𝜅𝐶 , 𝑡 (value for the hash computation) and 𝜎𝐶 values with the use of the
paiShamir library. Than the client’s part of the computation ends. Returns 1 on
success, 0 otherwise.

init_shssaka_mem
• input: none
• output: none

Initialise the server AKA keychain, client’s shssaka_Keychain (the first device in
the g_shssaka_devices[] field), all device key-chains and the PK_C point (client’s
main public key 𝑝𝑘𝐶). Procedure also initialise the Paillier key-chain, if it was not
initialised before. Returns 1 on success, 0 otherwise.

free_shssaka_mem
• input: none
• output: none

Frees the memory used by the server AKA keychain, client’s shssaka_Keychain (the
first device in the g_shssaka_devices[] field) all device key-chains and the PK_C
point (client’s main public key 𝑝𝑘𝐶). Procedure also frees the Paillier keychain.

shssaka_keyPrinter
• input: struct shssaka_Keychain *key
• output: none

Prints out the given key-chain into the console.

B.6 Schnorr’s signature file
Dependent libraries: support_functions.h, ShSSAKA.h, globals.h

gen_schnorr_keychain
• input:

75



– const EC_GROUP *group – group of the EC
– struct schnorr_Keychain *keychain – contains EC group (given by the

group parameter of the EC) and corresponding keys
• output: unsigned int

Generates the EC keychain. Returns 1 on success, 0 otherwise.

schnorr_sign
• input:

– EC_GROUP *group – group of the EC
– const BIGNUM *sk – private key used for the signing
– BIGNUM *message – message to be signed
– EC_POINT *kappa – generated 𝜅 point used in the second verification

process
– struct schnorr_Signature *signature – structure, where the computed

values are stored
• output: unsigned int

Carries out the Schnorr’s signing process in the EC modification. Returns 1 on
success, 0 otherwise.

schnorr_verify
• input:

– EC_GROUP *group – group of the EC
– const EC_POINT *pk – public key used for verification of the signature
– BIGNUM *message – signed message
– EC_POINT *kappa – generated 𝜅 point used in the second verification

process
– struct schnorr_Signature *signature – structure, where the computed

values are stored
• output: unsigned int

Carries out Schnorr’s verification process in the EC modification. Returns 1 on
success, 0 otherwise.

free_schnorr_keychain
• input: struct schnorr_Keychain *keys
• output: none

Frees the used memory used by the Schnorr’s key-chain.

init_schnorr_signature
• input:

76



– const EC_GROUP *group
– struct schnorr_Signature *signature

• output: none
Initialises and allocates the memory for the Schnorr’s signature structure.

free_schnorr_signature
• input: struct schnorr_Signature *signature
• output: none

Frees the used memory used by the Schnorr’s signature structure.

B.7 Support functions file
Dependent libraries: schnorrs_signature.h, ShSSAKA.h, globals.h

gen_pqg_params
• input:

– BIGNUM *p – generated prime P
– BIGNUM *q – generated prime Q
– BIGNUM *lambda – computed 𝜆 value
– struct paillier_PublicKey *pk – Paillier public key structure

• output: unsigned int
Generates random P and Q prime number of a defined bit-length (used BITS macro).
If the 𝐺𝐶𝐷(𝑃 −−1, 𝑄−−1) ̸= 1 in defined number of iterations (macro MAXITER)
the procedure ends. If not, then are computed the N, N_SQ (𝑛2) and the 𝜆 value.

After that is computed the generator G. Again, if 𝐺𝐶𝐷(𝐺, 𝑁𝑆𝑄) ̸= 1, then the
G value is recomputed (goes until the MAXITER number of iterations).

Returns 1 on success, 0 otherwise.

lcm
• input:

– BIGNUM *a – first value for the LCM computation
– BIGNUM *b – second value for the LCM computation
– BIGNUM *res – resulting value

• output: unsigned int
Computes the 𝐿𝐶𝑀(𝑎, 𝑏). Returns 1 on success, 0 otherwise.

count_mi
• input:

– BIGNUM *mi – resulting 𝜇 value

77



– BIGNUM *g – generator value
– BIGNUM *lambda – pre-computed 𝜆 value
– BIGNUM *n_sq – pre-computed 𝑛2 value (modulo value)
– BIGNUM *n – 𝑛 value (divisor value)

• output: unsigned int
Computes the 𝜇 value as the 𝐿(𝑔𝜆 mod 𝑛2)−1. The L function is carried out by the
eponymous implemented function. Returns 1 on success, 0 otherwise.

L
• input:

– BIGNUM *u – given value
– BIGNUM *n – divisor value
– BIGNUM *res – resulting value

• output: unsigned int
Computes (𝑢 − 1)/𝑛. Returns 1 on success, 0 otherwise.

lambda_computation
• input:

– BIGNUM *p – prime P value to compute 𝜆

– BIGNUM *q – prime Q value to compute 𝜆

– BIGNUM *lambda – resulting value
• output: unsigned int

Computes 𝜆 = 𝐿𝐶𝑀(𝑃 − 1, 𝑄 − 1). Returns 1 on success, 0 otherwise.

generate_rnd_paillier
• input:

– BIGNUM *bn_range – top value for the generation
– BIGNUM *gcd_chck – value to check GCD of the generated value with
– BIGNUM *random – resulting value

• output: unsigned int
Generates random value with 𝐺𝐶𝐷(𝑟𝑎𝑛𝑑𝑜𝑚, 𝑔𝑐𝑑_𝑐ℎ𝑐𝑘) = 1 property. Returns 1
on success, 0 otherwise.

ec_hash
• input:

– const EC_GROUP *group – EC group variable
– BIGNUM *res – resulting value
– BIGNUM *Y – numeric message
– EC_POINT *t_s – value of 𝑡 computed by the Schnorr’s signature

78



– EC_POINT *kappa – 𝜅 value computed by the Schnorr’s signature
• output: unsigned int

Procedure implementing the concatenation of needed values for the (ShSS)AKA
protocol. Concatenates the message, 𝑡 and 𝜅 in this order and creates hash SHA256.
Returns 1 on success, 0 otherwise.

rand_range
• input:

– BIGNUM *rnd – resulting random value
– const BIGNUM *bn_range – top value for the generation

• output: unsigned int
Generates random value in a range, where the top value is (bn_range – 1). Returns
1 on success, 0 otherwise.

rand_point
• input:

– const EC_GROUP *group – EC group variable
– EC_POINT *point – resulting random point

• output: unsigned int
Generate a random point on the elliptic curve given by the EC generator. Returns
1 on success, 0 otherwise.

set_precomps
• input:

– BIGNUM *message – searched message value
– BIGNUM *pre_message – resulting pre-computed message value
– BIGNUM *pre_noise – resulting pre-computed noise value

• output: unsigned int
Sets the pre-computed values before the Paillier encryption. If the global pre_message
or pre_noise is set to 1 given value of the message or randomly generated value is
found in the global JSON files. Otherwise, the values are set to 0.

init_serversign
• input:

– const EC_GROUP *group – EC group variable
– struct ServerSign *server_sign

• output: none
Initialise the memory for the given Server’s signature structure.

79



free_serversign
• input: struct ServerSign *server_sign
• output: none

Frees the memory used by the given Server’s signature structure.

init_clientproof
• input:

– const EC_GROUP *group – EC group variable
– struct ClientProof *client_proof

• output: none
Initialise the memory for the given Client’s proof structure.

free_clientproof
• input: struct ClientProof *client_proof
• output: none

Frees the memory used by the given Client’s proof structure.

init_deviceproof
• input:

– const EC_GROUP *group – EC group variable
– struct DeviceProof *device_proof

• output: none
Initialise the memory for the given Device’s proof structure.

free_deviceproof
• input: struct DeviceProof *device_proof
• output: none

Frees the memory used by the given Device’s proof structure.

*thread_creation
• input: void *threadid
• output: none

Procedure called by the pthread_create for the pre-computation of the message
and noise values.

threaded_precomputation
• input: none
• output: unsigned int

80



Procedure calling the thread creation. Returns 0 on success, otherwise exits the
application with the -1 code.

parse_JSON
• input: const char *restrict file_name
• output: cJSON *

Procedure for parsing the JSON file defined by the given path. Returns cJSON*
object with the parsed JSON file.

find_value
• input:

– cJSON *json – object with parsed JSON file
– BIGNUM *search – searched value
– BIGNUM *result – found value

• output: unsigned int
Procedure for finding the given value SEARCH in the given parsed JSON file. Re-
turns 1 on success, 0 otherwise.

read_keys
• input:

– const char *restrict file_name – path to the JSON file
– struct paillier_Keychain *keychain

• output: none
Procedure for loading the saved Paillier key-chain into the given structure from the
file in the given path.

write_keys
• input:

– const char *restrict file_name – path to the JSON file
– struct paillier_Keychain *keychain

• output: int
Saves the given Paillier keychain into the JSON file in the given path. Returns 0 on
success, EOF otherwise.

precomputation
• input:

– const char *restrict file_name – path to the JSON file
– struct paillier_Keychain *keychain
– unsigned int int_range – top value for the pre-computation

81



– unsigned int type – decides which type of pre-computation will be carried
out

• output: int
Starts the pre-computation procedure based on the given type (type = 1 for message
pre-computation, type = 2 for noise pre-computation). Function Is called by the
thread_creation. Returns 0 on success, EOF otherwise.

message_precomp
• input:

– unsigned int int_range – top value for the message pre-computation
– BIGNUM *base – Paillier generator for the message pre-computation
– BIGNUM *mod – value for modulo operation (Paillier value of 𝑛2)

• output: cJSON *
Procedure for pre-computation of the 𝑔𝑚 mod 𝑛2 for the Paillier encryption accel-
eration. During the procedure, the achieved values are saved to the cJSON* object
which is then returned.

noise_precomp
• input:

– unsigned int int_range – top value for the noise pre-computation
– BIGNUM *exp_value – Paillier value of N
– BIGNUM *mod – value for modulo operation (Paillier value of 𝑛2)

• output: cJSON *
Procedure for pre-computation of the 𝑟𝑛 mod 𝑛2 for the Paillier encryption accel-
eration. During the procedure, the achieved values are saved to the cJSON* object
which is then returned.

82


	Introduction
	Internet of Things
	IoT frameworks
	Security analysis

	Used cryptographic primitives
	Proof of Knowledge
	Authentication Key Agreement scheme
	Secret Sharing scheme
	Shamir's Secret Sharing

	Paillier scheme
	Paillier Scheme 1
	Paillier Scheme 3
	Homomorphic properties

	Secret Sharing-based Authentication Key Agreement

	Used libraries
	OpenSSL
	GTK
	cJSON

	Proposal of ShSSAKA protocol
	Implementation
	Installation
	Application development
	Application visualisation
	Experimental results
	Paillier scheme experimental results
	ShSSAKA experimental results


	Conclusion
	Symbols and abbreviations
	List of appendices
	Source code Directory Tree 
	Libraries description 
	Globals 
	AKA file 
	Paillier scheme file 
	PaiShamir file 
	ShSSAKA file 
	Schnorr's signature file 
	Support functions file 


