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Abstract

This paper presents the concept of a digital circuit that has the potential to reduce
the transmission overhead on the communication link between a high-speed network card with
FPGA and a host PC for small packets. This circuit is specifically designed for the NDK
platform developed by CESNET z.s.p.o., which is specified in the first chapter. The motivation
for writing this thesis is presented in the second chapter, which is dedicated
to the communication path between the host PC and the FPGA. The design of the resulting
digital circuit and its testing is described in the final part of this thesis.
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Abstrakt

Tato préace popisuje navrh ¢islicového obvodu, ktery ma potencial sniZit reZii pfenosu malych
paketi na komunikacni lince mezi vysokorychlostni sitovou kartou s FPGA a hostitelskym
poc¢itatem. Tento obvod je urCen specialné pro platformu NDK vyvinutou sdruzenim
CESNET z.s.p.o., proto je prvni kapitola vénovana jeji specifikaci. Motivace k sepsani této
prace je popsana v nasledujici kapitole, ktera je vénovana komunika¢ni lince mezi hostitelskym
pocitatem a FPGA. Posledni ¢ast popisuje navrh &islicového obvodu a jeho testovani jak
z pohledu funk¢nosti, tak z propustnosti.

Klicova slova
CESNET, NDK, MFB, 400 Gbps, FPGA, PCle, DMA, Posuvy dat



Rozsireny abstrakt

Ptenosové rychlosti dnesnich pocitatovych siti dosahuji nékolika stovek gigabitl za sekundu.
To otevird nové moznosti pro aplikace, které vyzaduji rychly a snadny ptfenos velkych objemt
dat, ale zaroven klade velké naroky na zpracovani takového provozu. Jednim z ndstroju,
které dokazou takovyto provoz zpracovat, jsou sitové karty zalozené na Cipech FPGA.
Jejich konfigurovatelnost umoziuje vytvofit firmware podle cilovych pozadavkid, nebo
pro specifické aplikace upravit firmware jiz existujici. V piipadé této diplomové préce se jedna
o platformu NDK (Network Development Kit) vytvofenou a udrzovanou sdruzenim CESNET
2..p.0., ktera poskytuje prostiedi pro praci se sitovym provozem na FPGA.

V rdmci této diplomové prace je navrzen ¢islicovy obvod pro zpracovani paketti na sbérnici
MFB (Multi-Frame Bus). Toto zpracovani spo¢iva v efektivnim spojeni vicero malych pakett
ze stejného DMA kandlu do vétSiho celku. Samotna sbérnice MFB je urCena pro pienos dat
mezi dil¢imi komponentami v ramci NDK. Aby byl vyuzit plny potencidl paralelniho
zpracovani na ¢ipu FPGA, umoznuje tato sbérnice pienaset vicero paketll ve stejném
hodinovém taktu. K dosazeni pozadované propustnosti 400 Gb/s je MFB konfigurovana tak,
aby byla schopna ptfenést Ctyfi nejkrat$i Ethernetové ramce najednou pii pracovni frekvenci
200 MHz.

Motivaci pro tvorbu takového obvodu je pfenosova rychlost pro malé pakety mezi sitovou
kartou a hostitelskym poc¢itac¢em. Tato rychlost mtize v ramci NDK klesnou az o nékolik desitek
procent z divodu velké rezie prenosu. Ta je zplisobena nékolika faktory, znichz ty
nejvyznamngéjsi jsou vyuziti sbérnice PCle a typ pouzitého DMA tadi¢e. Abychom tedy spravné
vyuzili dostupné prostiedky, je vhodné odesilat vétsi celky a jejich obsah extrahovat
na procesoru hostitelského pocitace. V ramci NDK se tyto vétsi celky nazyvaji Super-Pakety,
a aby jejich zpracovani nebylo pfili§ sloZité, jsou koncipovany tak, aby mezi jednotlivymi
dil¢imi pakety byly minimalni mezery.

Teoreticka Cast této prace Ctenafe nejdiive seznami s architekturou NDK a se zakladnim
principem komunikace ptes sbérnici PCle pomoci DMA pienosi. V rdmci prvni kapitoly,
vénujici se NDK je uveden piehled jednotlivych komponent, ze kterych se platforma sklada
a specifikace datovych sbérnic, které jsou pro ni typické. Jedna se pfedev§im o sbérnice MFB,
MVB (Multi-Value Bus) a MI (Memory Interface Bus). Druha kapitola se zabyva komunikaci
pfes PCle a zaméfuje se na popis rezie datového ptenosu jak pres samotnou sbérnici PCle,
tak i v ramci fadice DMA. V praktické ¢asti této prace jsou definovany pozadavky na cilovy
obvod a jeho samotny névrh. Kapitola vénujici se navrhu ¢islicového obvodu je rozdélena do
nékolika ¢asti, po¢inaje popisem obecné funkcnosti a konce popisem jednotlivych ¢asti obvodu.
Nasledujici kapitola se vénuje funkéni verifikaci, kterd ovéfuje funkcénost obvodu
dle definovanych pozadavki, a testim propustnosti. Tyto testy jsou rozdéleny na dvé ¢asti —
prvni ¢ast je vénovana méteni propustnosti v ramci verifikace, ktera ovétuje, zda vysledny
¢islicovy obvod dokédze pracovat bez nutnosti brzdit vstupni rozhrani; druha cast se vénuje
méfeni propustnosti na realné sitové karté. Vysledky téchto test ukazuji pozitivni dopad
na propustnost malych pakett a jsou shrnuty v posledni kapitole.
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INTRODUCTION

As internet networks become faster, they also become more vulnerable to cyber-attacks such
as Distributed Denial of Service (DDoS) attacks. The attacks are increasingly difficult to detect
due to the high-speed processing requirements of modern networks. To combat these threats,
powerful tools capable of monitoring backbone networks are essential. An example of such
a tool is an FPGA-based network card called XpressSX AGI-FH400G, developed by CESNET
z.5.p.0. This card is powered by the Network Development Kit (NDK), a framework that can be
used to create hardware-accelerated applications for FPGAs. These applications can analyze
and aggregate network traffic for the CPU, enabling processing speeds of up to 400 Gbps.

While the NDK framework is effective, it has certain limitations, especially when
transferring a large number of small network packets to the host memory. These small packets
can lead to increased transmission overhead, reducing the overall throughput of the system
by several tens of percent. To address the said issue, this thesis proposes the design of a digital
circuit that can effectively accumulate (buffer) small packets within several virtual lanes and
send them as a whole new unit, reducing the overall overhead. This circuit will be compatible
with the NDK firmware, allowing seamless integration into the existing system.

This work focuses on the design of a digital circuit that can handle data packets on the NDK
framework’s scalable Multi-Frame Bus (MFB). The MFB is a high-speed point-to-point bus
that can transfer multiple packets simultaneously at 200 MHz. The number of transferred
packets depends on its configuration. For example, a design capable of transmitting data
at 400 Gbps must be able to handle up to four smallest packets simultaneously in one clock
cycle. The design must also be able to adapt to different transfer rates and resource constraints
as the NDK supports various network cards. This creates a number of requirements that
the proposed design must meet, including scalability, parallel processing, and effective data
shifting to maximize the throughput.

The first chapter of this paper introduces the NDK platform, the framework in which
the proposed solution will be implemented. This chapter focuses on the communication buses
commonly used in the NDK platform, as understanding them is essential for designing this
digital circuit. The second chapter describes the data transmission in the NDK system (host
included) to show the cause of the performance loss in the transmission of small packets.
This chapter includes a description of PCle, its overhead, and the DMA transfers. The third
chapter outlines the design requirements and the concept of the proposed digital circuit called
the Frame Packer. In addition, this chapter also includes a more detailed description of each
subcomponent within the designed architecture. The fourth chapter of this thesis is dedicated
to verifying the functionality and measuring the performance of the designed component.
For verification purposes, the verification plan and test environment are introduced. The last
chapter provides a summary of the verification results, code coverage, and verification
throughput test. In addition, the resources required implementation of this circuit are presented,
as well as the impact on the throughput of the NDK system.

10



1 NDK FRAMEWORK

The Network Development Kit (NDK) is a framework for FPGA cards developed
by CESNET z.s.p.o. It enables users to develop their own applications by providing access
to various interfaces such as Ethernet, PCle or to external memory. [1]

Most of the NDK firmware and software is open source and available on GitHub. [2]
The VHDL modules used in the NDK firmware are part of the Open FPGA Modules (OFM)
library. [3] As the name suggests, the OFM library is also open source, and the output of this
thesis shall be included in it.

1.1 NDK Architecture

The NDK architecture for a generic FPGA card is shown in the figure below (Figure 1.1).
It is unique in its support for FPGAs from both Intel and AMD/Xilinx, the two major chip
producers. A list of currently supported cards is available on the CESNET GitHub
repository.[4] Additionally, the NDK’s highly scalable design enables a wide range of transfer
speeds, with a current maximum of 400 Gbps. Even higher speeds will be possible in the future
with sufficient FPGA resources and suitable peripherals.[5]

Generic FPGA Card
FPGA with NDK firmware
QSFPO ETHIP
P > MEM 1 1 5] DDR4
< IP
)
Network g Application
Module N (User logic)
L
< MEM
> «—> <> DDR4
QSFP1 ETH IP > S~ e [ |7
r ¢ A
3 " Frame |
Flash " MI . Packer
Network
A l
DMA
< »
¥ TSU < - > Module
BMC A
\ 4
A |FPGA| 4
>lotre [ MIC e PCle Module
A
PCle Connector
MFB + MVB Mi Bus Timestamp AXI/AVMM Physical
Connection

Fig. 1.1 The Simplified Architecture of NDK [5]
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This digital circuit has two main components for communicating with the outside world.
The first is the Network Module, which uses IP cores (designed by CESNET or by card vendor)
to implement the Ethernet sublayers. This module is responsible for transferring frames
between the Application core (The User logic) and the network, and for converting the IP
interface to the bus protocol used by the NDK platform. [6] The second module — PCle module
— handles the communication protocol on the PCle bus and transferring data and instructions
between the PC and the FPGA card. In supported FPGAs, this is implemented on Hard IP blocks
that can be connected directly to the PCle bus. [7]

FPGA cards often have DDR memories. For this reason, the NDK provides a memory
controller so that users can use standard buses (AXI/AVMM) to control external memory. [8]
The controller itself is directly connected to the DDR memory. Another large block in the NDK
design is the DMA module, which can communicate directly with the PC memory via PCI-
Express when it is used. The open-source version of the DMA in the NDK design is called
DMA Calypte. [9]

The last two modules in the diagram are the Time-Stamp unit (TSU) and the FPGA
controller. The TSU generates accurate timestamps for the Network module and Application,
core which can be used for performance or traffic analysis [10], and FPGA controller can reboot
the FPGA or boot a new one from the QSPI flash memory. [5]

The NDK design has three types of buses — the Memory Interface bus (Ml), the Multi-Value
Bus (MVB), and the Multi-Frame Bus (MFB). The MI bus allows the software to access
the internal register of the design. [11] This is done by MTC unit (MI Transaction Controller),
which transfers PCle transactions and pushes them in form of MI requests to the sort of Ml
network. The MVB bus is often used along with the MFB to transfer fixed-length metadata
[12], and the MFB stream bus is a high-speed data bus that is able efficiently transfer large
amounts of data between components (point-to-point transfer). [13] More detailed information
about this type of bus and the others will be described in the following sections as it is essential
to the final outcome of this work. The outcome itself is indicated in the figure above
(Figure 1.1) as the Frame Packer, which should put small packets together to create so called
Super-Packet. This Super-Packet could, in theory, increase the efficiency of the data transfer
by lowering the overhead on the PCle bus and effectively use Descriptors in DMA transfer.
The topic of the efficiency is discussed in the following chapter.

1.1.1 MIBus

The Memory Interface (MI) is a master/slave bus used by software to read and write data
for configuring, control state, or statistics reading of components in the NDK platform. For this
purpose, each component has its own address and is connected to a sort of MI network which
is controlled by MI Transaction Controller (MTC). [14] Specification described in this chapter
is based on MI Specification in NDK documentation. [11] The following table defines the Ml
bus signals from the perspective of the main component (Table 1.1).
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Table 1.1 A list of signals that define MI Bus — Slave perspective

Signal Name Signal Direction Signal Width Signal Description
ADDR in ADDR_WIDTH Address
DWR in DATA _WIDTH Data Write
BE in DATA_WIDTH/8 Byte Enable
WR in 1 Write flag
RD in 1 Read flag
ARDY out 1 Address Ready
DRD out DATA_WIDTH Data Read
DRDY out 1 Data Ready

The MI bus supports two types of requests — write and read. A write request is initiated
by setting the WR flag high. To route signal to the correct component, an address signal is used.
Data intended for writing to the slave component is carried by a signal called DWR. This data
is only valid when the WR flag is set. The data, along with BE and ADDR, must remain valid
until the slave component acknowledges the request by setting the ARDY signal high.
The simplified timing diagram of the write operation is shown below (Figure 1.2). During the
first write request, data DO is written to the component with address AO. There is a delay due
to the late set of the ARDY signal by the main component. The second part shows writing two
data items in two clock cycles — without delay.

ek [ L L L LA LL L
ADDR 7R A0 22272772 A X2 Y%,

DWR PO DO 2777 01 X 02 Y,
WR / \ I [\
ARDY [\ f [ N

Fig. 1.2 Timing diagram of write process on MI Bus

Another type of request is a read request, indicated by the RD flag. Similar to the write
process, this request is accepted by setting ARDY high. However, accepting the request does
not imply confirming the sent data. Data confirmation is indicated by the DRDY flag, which
can be issued simultaneously with the ARDY signal or later. Setting ARDY high indicates that
the slave component is ready to accept another request and setting DRDY signal a valid
response to the read request. The following timing diagram illustrates the read request process.
The first part of the diagram shows read request to address AO. The response is immediate and
confirmed by sending data item DO and setting the ARDY and DRDY signals high.
In the second read request, there is a request to address Al, to which is responded by setting
ARDY high without sending any data. Master component sends another request to address A2
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and the main component responds to these requests in the order they were received by setting
DRDY signal high for each DRD item.

SnEpEpEpipiyipipipipiniins
ADDR 7720 PO X227 )00k M N R K777
RD . S\ : e /R : - :
ARDY N\ N
DR S A o N o2 Y7777,
oRoY: N 2 f TN

Fig. 1.3 Timing diagram of read process on Ml Bus

Both, write and read request can be combined in a single communication. The typical
example of this operation is called read-modify-write, which is used to control multi-port
memory. [15] Additionally, byte enable can be used to transmit data that is smaller than the data
bus width. The full specification of MI Bus is available in NDK documentation. [11]

1.1.2 MVB Bus

The Multi-Value Bus (MVB) was created by CESNET to enable parallel processing of data in
the NDK architecture. It can transfer multiple data in a single clock cycle and is often used as
a separate channel to transfer fixed length metadata for the data transmitted on the MFB bus.
The following table shows the signals that the MVB is made of (Table 1.2).

Table 1.2 A list of signals that define MVB Bus

Signal Name Signal Width Signal Description
DATA WORD_WIDTH Transmitted data
VLD ITEMS Item Valid
SRC_RDY 1 Source Ready
DST_RDY 1 Destination Ready

Data on the MVB are called words, which consist of a specified number of items (ITEMS).
The width of each item is defined by the generic parameter ITEM_WIDTH when bus is created.
The data width is calculated by multiplying these two parameters. The valid signal (VLD)
indicates which items in the data word can be processed. Since not all items must have valid
data, gaps between items may occur. The following figure (Figure 1.4) shows the structure
of the described bus.
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Fig. 1.4 Structure of the MVB Bus

The MVB introduces the Source Ready (SRC_RDY) and Destination Ready (DST_RDY)
signals, which implement a request-acknowledgment mechanism. Transmitter validates its data
and creates write request by setting SRC_RDY high. This request is confirmed by the receiver
when the DST_RDY s set high as well. Both signals must be high for a transfer to complete.
The port direction of each signal depends on whether the component is receiving or transmitting
data on the MVB. For a receiving component, SRC_RDY is an input and DST_RDY is
an output. For a transmitting component, the port direction is reversed.

SRC_RDY SRC_RDY
> >
Transmitter Receiver | Transmitter Receiver
€ €
DST_RDY DST_RDY

Fig. 1.5 Portdirection in SRC/DST_RDY logic

Data transfer begins when SRC_RDY is set high. To indicate readiness to receive data,
the receiver sets DST_RDY to high. The VLD signal, which has a width equal to the number
of items in the data word, indicates which data items are meant to be processed. Each bit
inthe VLD signal validates the corresponding data item. The possible communication
on the MVB bus is shown below (Figure 1.6). Each X in sent data corresponds to the VLD
signal and indicates that the data in the item is not valid. The detailed specification of the MVB
is available in the NDK Documentation. [12]

) [ S I e O SO O S O S S oy
DATA[15:0 1 Z27)_ DCBX_ 32X0 X_TX654 X277 XF02 X EXXC X%
LD (30| 7 110X 1101 X101 27777777 o1t X 1001 ¥
SRC_RDY f : : : \ 1 : L

DST RDY / \ / f f f f f f A

Fig. 1.6 Timing diagram of communication on MVB Bus
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1.1.3 MFB Bus

The Multi-Frame Bus (MFB) shares the same principle of Multi-Buses as the MVB. Its purpose
is to increase efficiency by utilizing unused space in data bus. For instance, the AXI-Stream
protocol by ARM [17] requires data to start at the beginning of the data word, which can lower
bus utilization when frames are not the same size as the word. The same applies to the Avalon-
Streaming protocol by Intel. [18] For example, a 512b wide data bus can transfer the shortest
possible Ethernet frame in one clock cycle, resulting in high efficiency when transferring 64B
frames. However, Ethernet frames can reach up to 1518B [19], leading to frame sizes that don’t
align perfectly with the word. A 96B frame would leave half of the word empty since the new
frame must start at the beginning. The Multi-Bus principle, on the other hand, allows frames
to start at a different location within the data word, which is allowing multiple frames (or just
parts of frames) to share the same word. [16] This chapter describes how is this method
implemented and what rules must be followed to increase efficiency of the data transfer and its
processing across the FPGA. Table 1.3 lists all the signals that define the MFB bus.

Table 1.3 A list of signals that define MFB Bus

Signal Name Signal Width Signal Description
DATA WORD_WIDTH Transmitted data
SOF REGIONS Start of Frame — Region mask
EOF REGIONS End of Frame — Region mask
SOF POS SOF POS WIDTH Position of the beginning(s) of
- - - a frame(s)
EOF POS EOF POS WIDTH Position of the ending(s) of a
- - - frame(s)
SRC_RDY 1 Source Ready
DST_RDY 1 Destination Ready

Data are transmitted in the MFB words, represented by the signal DATA. The width of this
signal is determined by the bus configuration parameters REGIONS, REGION_SIZE,
BLOCK SIZE, and ITEM_WIDTH. The structure of the bus is as follows: The parameter
REGIONS defines the number of regions in the word. Each region is divided into blocks, and
the number of blocks per region is defined by the parameter REGION_SIZE. These blocks, in
turn, are made up of items, and the number of items per block is specified by the parameter
BLOCK_SIZE. Finally, the parameter ITEM_WIDTH defines the size of the smallest
recognizable unit on MFB, which is the item. The size of the MFB word can be calculated
by multiplying these parameters together.

The REGIONS parameter defines the number of sections into which the word is divided.
The rule is that the region must contain up to one start of frame (SOF) and one end of frame
(EOF), so it can fit the whole frame or the end of one frame and the beginning of another frame.
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The maximum number of frames (or parts of frames) that can be transmitted in a single clock
cycle is equal to the number REGIONS + 1 in a word. The second parameter, REGION_SIZE,
determines the number of blocks in each region. Data transmission must follow the rule that
the beginning of the frame must be aligned with the block. The third parameter, BLOCK_SIZE,
sets the number of items that are in each block. An item is the smallest unit that can be
recognized on the MFB bus, and its size is defined by the parameter ITEM_WIDTH. Items are
locations where the end of frames must be aligned.

The configuration of the MFB is labelled as MFB#(REGIONS, REGION_SIZE,
BLOCK_SIZE, ITEM_WIDTH). Although these parameters can be set randomly, there are
only a few configurations that are supported in NDK. For example, the 100G Ethernet protocol
is most effective (resources vs. frequency) when the bus configuration is MFB#(1,8,8,8). NDK
design for 400 Gbps must be able to handle configuration MFB#(4,8,8,8), which can transfer
4 smallest Ethernet frames at the same time. The communication with PCle is configured
as MFB#(2,1,8,32) due to DWORD alignment on the PCle bus. The following figure illustrates
described configuration (Figure 1.7).

MFB

word

Regions Region 3 Region 2 Region 1 Region 0

Blocks B3 B2 B1 BO B3 B2 B1 BO B3 B2 B1 BO
Items 1o flo|mflofMjlojfojMflofmMjlofi1|io

Fig. 1.7 Configuration of MFB Bus

As mentioned before, the MFB is able to transfer multiple frames in a single clock cycle or
share unused space with other frames. To do this, it needs to know the position of each frame
within the data word. This is where the SOF, EOF, SOF_POS, and EOF_POS signals come in.
The SOF signal indicates the region where the start of the frame is located. The EOF signal
works in the same way. The sizes of these signals are based on the REGIONS parameter,
and its data serves as a mask for the start or end of the frame. The following diagram illustrates
the SOF and EOF mechanism. A SOF with a value of "1111" indicates that the beginning
of the packet is in every region and an EOF of "1101" indicates that the packet ends are in every
region except the second. From this variation, it is possible to roughly determine where each
packet is located. That is, there is an entire packet in the first region, there is a packet that starts
in the second region and ends in the third region, there is a packet that starts in the third region
and ends in the fourth region, and finally there is a fourth packet that starts in the fourth region
and ends in one of the following words.
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Fig. 1.8 MFB configuration — SOF & EOF example

The figure above (Figure 1.8) has one remaining issue — the exact location of frames cannot
be pinpointed within the MFB word. The SOF and EOF masks only provide information about
whether a frame starts or ends within a region. To determine the precise location, two additional
signals are needed, SOF POS and EOF_POS. The width of SOF POS is determined
by the number of blocks and its value indicates the location of the frame’s start within
the region, which is aligned to the blocks. The width of EOF_POS must have a higher
resolution, as the end of frames can be aligned to the items. Its width is determined
by the number of blocks and number of items within the MFB word. [13]
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Fig. 1.9 MFB configuration — SOF_POS & EOF _POS example
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The last two signals in the table (Table 1.3) are SRC_RDY and DST_RDY. These signals
were described in the MVB bus, and they function in the same way. The following timing
diagram (Figure 1.10) shows how data is transferred on the MFB bus from the transmitter to
the receiver — SRC_RDY is the input of the component and DST_RDY output. The transmitted
frames, labeled from A to F, comply with the figure presented below (Figure 1.11). The MFB
configuration used in this example is MFB#(4,4,2,8).
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Fig. 1.10 Timing diagram of data transmission on MFB Bus
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1.11 Transmission of frames on MFB Bus

19



2 DATA TRANSMISSION

The main goal of this work is to efficiently move data between an FPGA and software running
on a host PC. To achieve this, the NDK can directly transfer packets from Ethernet (or processed
data) to the computer’s memory using a DMA controller and suitable software. The interface
that allows FPGA to access host memory is called PCle. The DMA transfer process and its
effectiveness on PCle will be discussed in detail in this chapter.

2.1 PCIl-express

PCle (Peripheral Component Interconnect Express) is a high-speed serial interconnection that
is primarily used to connect components such as the CPU, DDR memory, graphic card,
or acceleration cards with FPGAs. It is the successor of the PCI (Peripheral Component
Interconnect) standard, which was first introduced by Intel in 1992. The original PCI was a 32-
bit bus that could transfer data at a maximum speed of 1056 Mbps. [22] In contrast,
the current PCle 4.0 standard can transfer data at speeds up to 32 GBps, and the newer PCle
5.0 even up to 64 GBps in x16 lane configuration. [23] This chapter will describe its architecture
and transmission efficiency of the actual data.

2.1.1 PCle Architecture

PCle uses a bus-based architecture, meaning that the peripherals are connected to a central unit.
In this case the Root Complex. These peripherals (or endpoints), communicate with the Root
Complex using lanes, where lane is a pair of serial links. For example, PCle 4.0 x16 has 16
lanes, where one wire in each pair is for transmitting data, and the other is for receiving.
The Root Complex itself manages communication for all connected endpoints and sets up direct
memory access (DMA) for them. [21] The topology of the PCle is shown in the Figure 2.1.

CPU
PCle >
Endpoint |¢ Root Complex € DDR memory
PCle
Endpoint
PCle PCle
Endpoint Endpoint

Fig. 2.1 PCle Bus topology [21]
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The PCle is implemented in the first three layers of the ISO/OSI model. The Physical Layer
(PL), the Data Link Layer (DLL), and the Transaction Layer (TL). When data is sent from one
device to another, it must pass through each of these layers. In Transaction Layer, the data are
divided into units called Transaction Layer Packets (TLPs). Every TLP has its own Address
header, which defines the destination device, Payload space, which is used to carry data,
and an optional Cyclic Redundancy Check (CRC), to detect errors in the data transmission.
The CRC is handled by the device logic and is typically labelled as ECRC. The control
of the checksum is done by the device logic at the receiver. The header can be from 12 to 16
bytes long, and the CRC 4 bytes long. [24]

RAM
Acceleration
card il N
AH'U LT ll!!ll llliLLL
Transaction Transaction
Layer Layer
Data Link Data Link
Layer Layer
Physical Physical
Layer Layer
A I Lane T

Fig. 2.2 PCle layers between two devices [24]

The Data Link Layer ensures reliable transmission of the TLP by detecting errors, managing
the link connection, and controlling the order of data transmission. To detect errors, the DLL
adds a CRC to the TLP packet labelled as LCRC. This CRC is 1 byte long. The DLL also
ensures that data is sent in the correct order by adding a Sequence Number to each TLP packet
creating Data Link Layer Packet (DLLP). Sequence Number is 2 bytes long and tells
the receiver which TLP it should expect to receive next. To ensure that TLP packets are
received correctly, the DLL uses a Replay Buffer, which stores sent packets until a confirmation
message is received. The confirmation message is sent in a separate DLLPs, which are typically
6 bytes long and includes an ACK or NACK flag to indicate whether the corresponding TLP
was received successfully or not. When the transmitter receives an ACK, it deletes
the corresponding TLP from the Replay Buffer. On the other hand, when NACK is received, it
resends the TLP. The transmitter will continue to resend TLPs until it receives an ACK, or the
Replay Buffer fills up. In the second case the communication will break. [20][24][25][26]
Described principle of DLL is shown in Figure 2.3.
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Fig. 2.3 Communication on Data Link Layer

The last part of the PCle ISO/OSI model is the Physical Layer. Its purpose is to transform
data from the DLL to the bitstream which can be sent over the wires. Once the DLL pushes its
data to PL it must pass through several steps. Firstly, the data is Scrambled, which means it is
evenly distributed across the available lanes. Then, the data is encoded to ensure DC balance
on the bus and enable clock recovery at the receiver. The typical encoding is 128b/130b,
meaning that 128 bits of data are encoded into a 130-bit signal. The older PCle generation used
8b/10b encoding, which caused high loss in throughput. The encoded data is then processed
by the SERDES (Serializer-Deserializer) converter, which transforms the bytes on each lane
into a bitstream. To differentiate between DLP packets, START and END symbols are added
to the original packet. Each of these symbols is typically on byte long. [27] The final packet
that is send over the physical wires is shown in the figure below (Figure 2.4).

Additional data from Physical Layer

|
Additional data from Data Link Layer
I

Additonal data from Transaction Layer
|

Y i Actual data i \ 4

START | Sequence Number | Address Header Payload ECRC LCRC END

1B 2B 12-16B 0-4096 B 4B 4B 1B

Fig. 2.4 Packet sent over the PCle [24]

2.1.2 Efficiency of Data Transfer Over PCle

There are two main factors that can affect the efficiency of data transfer over the PCle bus.
Data transfer overhead and system configuration. Data transfer overhead is mainly caused
by encoding, bus traffic and TLP packet overhead. In system configuration is the most crucial
parameter Maximum Payload Size (MPS). This parameter determines the maximum amount
of data that can be transferred within a single TLP. Since each component on the bus has its
own MPS parameter, the lowest value is considered globally in the PCle system. This chapter
will be based on the source of AMD/Xilinx [20].
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The first discussed factor in the transfer overhead is Symbol Encoding. It is a method
of converting data signals in PL into more bits to improve reliability and ensure DC balance
on the bus. While this is essential for proper data transmission, it also reduces the throughput
of the transfer since specification gives the maximum speed for encoded signals. The common
encoding used in newer generations of PCle is 128b/130b, which means that for every 16 bytes
of data, there are additional 2 bits that are considered a part of the transmission. This results
in an average throughput loss of approximately 2%. In contrast, older generations of PCle used
8b/10b encoding, which caused throughput loss of 20%. [20]

The second factor in the transfer overhead that is affecting overall performance of the bus
is the Traffic Overhead. This type of overhead is caused by packets whose task is to manage
the link and ensure reliable data transfer. One example of traffic overhead is the Credit-based
Flow Control system, which ensures that the data is not discarded due to a small buffer
in the receiver. The initial credit number is obtained from the initialization process.
When the transmitter sends data to the receiver, it consumes one credit per sent packet.
Once the credit number reaches zero, the transmitter waits until the credit number is updated.
This is usually done once the buffer on the receiver site is empty. [26]

As a part of a transfer overhead may be considered an ACK/NACK mechanism described
in the previous section. This confirmation, even though needed for transfer reliability,
is consuming bandwidth of the link. The overhead cause by this mechanism can be reduced
by collapsing messages into one, meaning the message with the sequence number 3 deletes TLP
packets with indexes from 0 to 3. But by doing this a throttle may occur in the form of a full
Replay Buffer. [20]
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Fig. 2.5 Transfer inefficiency caused by Packet overhead — worst case

Another factor that can reduce efficiency of the system throughput are the packets in which
the data is transmitted. Such a packet is shown in Figure 2.4. In addition to the actual data,
there is also overhead added by PCle layers. In the worst case this overhead can be up to 28 B.
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This inefficiency is significant when transferring large amounts of small data to different
addresses. The figure above (Figure 2.5) shows how the Payload can change the efficiency
of the transfer. The MPS is considered as the maximum possible value — 4096 B, meaning each
data packet is sent in a its own TLP. The following equation describes the efficiency
dependence on payload of each TLP packet.

Data Size
Data Size + TLP Overhead

Transfer Ef ficiency = 100 [%] (2.1)

The last factor affecting PCle performance is the system parameter Maximum Payload Size
(MPS). In the last example this parameter was set to its maximum value — 4096B.
However, this value is not widely used for several reasons. The first reason is that every
component in the data path must have the same ability to handle such payload. This may be
possible, but it is problematic in terms of component prices. The second reason is efficiency.
It is possible to achieve sufficient efficiency by setting the MPS to lower values. For example,
transferring a 512B data packet with the MPS set to 128B would require 4 TLPs. This means
that the overhead in the worst case would be 112B. The efficiency of this transfer would
be 82%. Setting the MPS parameter to 256B would increase the efficiency to 90% and by
setting MPS to 512B, the efficiency would be 94 %. The point is that increasing the MPS
parameter gives better efficiency, but the increase is disproportionate to the effort — the price of
better hardware and complexity of the software. This is why most systems have MPS set to
128B or 256B. [20] The following equation describes transfer efficiency on MPS parameter.

MPS
MPS + Overhead

Transfer Ef ficiency(MPS) = - 100 [%] (2.2)

To summarize this chapter. Transferring data between two endpoints requires a certain
amount of overhead. While some factors are out of the user’s control —such as symbol encoding
or packet overhead — understanding them can help optimize the system for maximum efficiency.
The main factor that can be influenced is to fully utilize the TLP packet at the PCle level, so the
overhead is minimal.

2.2 DMA

Direct Memory Access (DMA) is a way for devices to communicate directly
with the computer’s memory (Random Access Memory — RAM) without using the Central
Processing Unit (CPU). By doing this, it is possible to efficiently transfer large amounts of data
without consuming the CPU’s time, so it can focus on other tasks such as data processing. [28]
DMA is usually made possible by a bus that connects the CPU, RAM, and external device.
The most common type of bus used for DMA is PCle.
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At the heart of DMA transfers is a device called the DMA Controller. [28] This device
temporarily takes control of the PCle bus instead of the CPU to transfer large amounts of data.
By transferring data this way, the transfer can be more efficient because the DMA Controller
can be optimized for the task. However, the controller cannot work on its own, as it would cause
conflicts in the host memory. For this reason, the function of the controller is handled by using
Descriptors created by the driver running on the CPU. [29] The descriptor is an instruction
for the DMA Controller. Each of these instructions gives access to the part of the memory where
the controller can read or write data. The way the DMA is built or descriptors are passed can
vary, so the following section will only focus on DMA transfer in the NDK Framework.

DMA Controllers can be designed in two ways: Streaming DMA and Packet DMA.
Streaming DMA is optimized for transferring continuous streams of data, such as audio or
video, because it can send multiple packets together. This allows the DMA Controller
to increase the throughput of the system by reducing the overhead on the PCle. [30] However,
it can make it difficult for software to process other data because the received data is stored
in a continuous memory space. Packet DMA, on the other hand, distinguishes between packets
and sends them separately to the memory space allocated by the descriptor, making it easier
for different CPU cores or applications to access the data. This approach, however, has a higher
transfer overhead than streaming. [31]

2.2.1 DMA Transfers in NDK

The NDK uses a vendor independent DMA Controller to communicate with the host memory.
The first DMA Controller developed is called DMA Medusa, [31][9] which can transfer data
at up to 400 Gbps and supports up to 512 DMA channels. The second controller, currently
available in configuration MFB#(1,4,8,8), is called DMA Calypte and is designed to achieve
the lowest possible transfer latency. Both controllers are implemented entirely
on the FPGA [32] and are connected directly to the PCle Hard IP, which in turn is connected
to the PCle bus. For the 400 Gbps transfer rate, the card with the FPGA is connected to the host
PC via two PCle 4.0 x16 slots or single PCle 5.0 x16 slot.

The operation of this DMA Controller is packet-based, which means it uses its given
memory space for a single packet. This makes it easier to build software on top of it but may
result in higher transfer overhead, which becomes amplified when transferring large amounts
of small packets. There are two types of overhead, on the PCle bus in the form of TLPs whose
payload is not fully utilized (see prev. section), as well as overhead caused by the management
of the transfer. The management overhead is caused by the increased use of descriptors that
need to be periodically updated so that the DMA Controller can send a continuous stream of
data. This update process consumes some of the PCle bandwidth. The following example
describes the process of transferring data from the peripheral device to the host RAM by using
the RX module of the DMA Controller. A schematic representation of this example is shown
in the figure below (Figure 2.6). It should be noted that the RX module is used to receive data
from the Application core in the FPGA and to forward it to the host memory via PCle. [33]
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Fig. 2.6 The DMA architecture over the PCle bus [35]

Before data can be sent, the DMA controller must be set up. This is done by the DMA driver
running on the host CPU by creating a set of descriptors and sending them to its memory.
The descriptors are stored in a specific address space known to the DMA Controller and are
automatically updated as they are used. The final part of the setup is for the DMA Controller
to load the descriptors from the host memory. When the setup is complete and the controller
has data to send to the host memory, it takes control of the bus and starts transferring packets.
As an example, these packets are the Ethernet frames sent when using the ndk-app-minimal
reference model. Each frame is first converted to the TLP and then sent over the bus to the host
memory. If the frame is larger than the payload size (MPS) of the TLP, the frame is divided
into smaller chunks. Once the frame is written into the host memory, the descriptor is marked
as used and another is used for the next frame. Periodically, the status of the used descriptors is
sent back to the host memory where the DMA driver is running on the CPU and the descriptors
are replaced by new ones. The transfer overhead, based on this example, is higher when
the small frames are sent over the bus because the descriptors need to be updated more often
than in the case of larger frames. [33] [34] [35]

To improve the speed of data processing on the CPU or enable multiple applications to use
FPGA card, the DMA implemented in the NDK architecture supports channels. This approach
divides the traffic from the FPGA into multiple virtual lanes, called DMA Channels.
From a software perspective, each channel behaves as an independent network interface, each
of which can be accessed individually. Each channel operates independently within the DMA
module, with each channel controlled by an independent driver running on the CPU. This
control is provided by the MI bus and its task is to filter the data transfer to the host memory
by setting the control register to either start or stop. When a channel is stopped, the DMA
Controller drops all incoming frames associated with that channel. [31][32]
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3 DESIGN OF THE ARCHITECTURE

The aim of this thesis is to design a digital circuit that can increase the transmission efficiency
of small packets, thus improving the overall throughput of the system for this type of data.
A previous chapter discussed the concept of transmission efficiency and proposed a solution
to increase it by combining small packets into larger units. In the NDK platform, these larger
units are called Super-Packets. By implementing this component, the DMA used in the NDK
design can mimic the behavior of Streaming DMA while keeping the benefits of the packet-
based DMA approach. This chapter describes the specific requirements for the digital circuit
and proposes a solution for the component that could theoretically increase the transfer rate for
small packets without causing a drop in performance when sending larger packets.

3.1 Design Requirements

This section provides a more detailed description of the task so that the component can be
properly designed. As mentioned earlier, the design should merge several small packets
received from the MFB interface and create a single larger super-packet. The packets within
the Super-Packet should be aligned to MFB blocks, i.e. there should be minimal empty space.
The size of the Super-Packet is determined by the available memory space specified by
the descriptor. However, the Super-Packet doesn’t have to completely fill the allocated space,
so its length ranges from the minimum size of an Ethernet frame to the maximum available
memory. This length can be set by a generic parameter but should not exceed 2048 B in total.

The component must also manage the DMA Channels, as DMA module would interpret
the SP as a single packet with a single channel number so only packets with the same channel
number can be accumulated into one SP. However, the MFB bus itself is a challenge. The MFB
bus allows multiple packets to be transmitted within a single clock cycle, and these packets
do not necessarily belong to the same channel. As mentioned earlier, the MFB configuration
MFB#(4,8,8,8) allows data from up to five different packet to be transmitted. To overcome this
problem, the incoming traffic must be sorted by the channel number associated with each packet
in the MFB word. To ensure consistency, the output interface of the component must be
the same as the input interface. By dividing incoming traffic into several separate channels,
multiple output interfaces are created. As the component must be compatible with the existing
system, a merging mechanism is essential as the DMA input interface is designed for the single
MFB bus. In other words, the input and output interface is common for all DMA Channels and
the merging mechanism is needed as processing multiple DMA Channels requires divide
the traffic into equal number of processing units.

The alignment principle described so far is shown in the following figure (Figure 3.1).
In this example, the MFB input with the configuration MFB#(2,4,2,8) contains packets
from two channels. The proposed component should be able to sort the data according to
the channel to which it belongs. The packets are then stored in output FIFOs, where they are
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aligned to the blocks so the gap between packets is minimal. The width of each FIFO
corresponds to the width of the MFB, and its depth depends on the size of the Super-Packet.

MFB#(2,4,2,8) 11—
H Channel 0 H H FIFO 0
HKk X
recion 11 (11l ] IRI|
BLOCK 1 T 1n N Channel 1 H
ITEM  § L FIFO 1

\4

Fig. 3.1 The basic principle of the Frame Packer

To maximize efficiency, it is necessary to store parts of super-packet until they reach
the required size. However, there are some potential challenges. Firstly, during periods of traffic
when a channel is not fully utilized, it may take longer to assemble the Super-Packet
of minimum length. To overcome this, a timeout mechanism must be implemented to prevent
the packet from taking too long to reach its destination. It should be noted that even if timeout
doesn’t occur, the assembly itself will increase the latency of the system, which is insignificant
in certain use cases, such as network monitoring. Secondly, packets within the Super-Packets
must be coherent. This means that if the stored Super-Packet is partially filled with small
packets, and an incoming packet exceeds its maximum size, the stored data must be sent before
the new packets can be processed. Given the constraint that packets must be sent in the order
they were received, sending larger packet before the stored data is not an option.

As mentioned earlier, the NDK design is scalable, and the proposed solution must be as
well. To achieve a throughput of 100 Gbps, the NDK design is capable of handling
the MFB#(1,8,8,8) configuration. However, the target throughput is meant to be 400 Ghps.
This is typically achieved by using the MFB#(4,8,8,8) configuration at frequency of 200 MHz.
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Such speed creates a constraint where the longest combinational path must not exceed a delay
of 5ns. It’s worth noting that the NDK supports high-end FPGAs from both major chip
manufactures, AMD/Xilinx and Intel, which means there are plenty of resources available
for the given task. On the other hand, it also requires a generic design that cannot use vendor
specific hard blocks, which can perform some tasks efficiently.

3.2 Top Level Concept

This section describes the top-level architecture of the proposed design based
on the requirements outlined in the previous section. It consists of several parts and
the interfaces to communicate with the existing system. The input interface of the proposed
component consists of MFB and MVB bus with the configuration necessary for the required
speed. The same configuration is used for the output interface since the compatibility with the
existing NDK architecture must be preserved. The following Figure 3.2 illustrates the internal
structure of the Frame Packer.

)

—>» BS_CTRL Pointer (=
/]
l Channel 0
sl VT \’
MFB — —
{ - Channel 1
—> METADATA = — > MFB
INSERTOR > AUX BS o V1 / >
MVB _\~) Channel 2
¥
Channel 3 M‘\;B MVB
>

FIFO

Fig. 3.2 Top Level view of the Frame Packer — 4 Regions, 4 Channels

As the MFB and MVB interfaces are not synchronized at the input of the component, a unit
called the Metadata Insertor is used to synchronize them. Once the Metadata Insertor has both
the data from MFB and the metadata from MVB, the stream is passed to the next stage where
the auxiliary signals are generated. These signals help to process the data in each Channel unit
and to correctly calculate the select signal for each Barrel Shifter. In the next stage, the data and
auxiliary signals are processed by the Barrel Shifters. Their job is to shift data to reduce empty
space between packets to the minimum. Shifting the data at the input of the component saves
the resources compared to the case where there are Barrel Shifters in each Channel unit. Note
that the number of channel units is set by the generic parameter. The number of Barrel Shifters
in this case depends on the REGIONS parameter of the MFB bus. Since the MFB can carry up
to REGIONS + 1 packets simultaneously, there must be the same number of Barrel Shifters so
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that each can handle its own part of the packet independently. Once the data has been shifted,
it is sent to the channel to which it belongs. This distribution is based on the metadata
from the MVB bus and is performed using Demux component available in the OFM repository.

Each Channel has its own Pointer which is updated by the data from the Barrel Shifter
Controller. This pointer is used to track the assembly status of each word within the channel
and is another parameter that must be considered when calculating the shift select signal
for the Barrel Shifters. Inside the Channel unit itself, the Super-Packet is assembled by
appending parts of shifted packets. Once the Super-Packet is complete, the SRC_RDY signal
Is generated and the output component, called the Merger, considers the completed channel,
and gives it enough space to send the Super-Packet to the output MFB interface. Finally,
the MVB FIFO is used to store Super-Packet metadata and passes it to the MVB interface when
requested. This metadata is generated in the Channel from which the Super-Packet originates.

3.3 Components

The previous section introduced the basic structure of the Frame Packer and its concept.
This section gives a more detailed description of each part. Although the principle
of concatenating packets into Super-Packets (per each channel) is quite simple, a closer look
at the structure might convince you otherwise. The implementation of such a digital circuit is
not so simple, especially in the case where multiple packets are transferred at the same time.

3.3.1 Metadata Insertor

This component is part of the OFM library [36]. Its purpose is to insert metadata from the MVB
bus into the auxiliary META signal of the MFB bus and to align the metadata with the SOF
(or EOF) of the frame. In this case, the MVB bus transmits the Length and Channel ID of each
packet. The reason for including this component is that the MVB and MFB buses are
independent buses. Therefore, they are not synchronized, which means that MVB data can
arrive at different times but in the same order as packets on the MFB bus. The principle of the
Metadata Insertor is shown in the following figure (Figure 3.3).

MFB#(4,8,8.8) MVB MFB_META Regions
LNG+
EOF i 3
2
LNG+
EOF | | SOF N
LNG+ LNG+
S0 CH_ID CH_ID 0

Fig. 3.3 Principle of Metadata Insertor

30



3.3.2 Auxiliary Generator

Once the MFB data and MVB metadata are synchronized, the stream is passed to the stage
where auxiliary signals are generated. These signals help calculate the shift select signal
for each Barrel Shifter and recreate additional MFB signals, such as SOF or EOF, as these
signals will not be valid after the data shifts.

The first signal generated is Block Valid, which is a vector that validates each block
of the packet in the MFB word. This vector is generated separately for each packet, resulting
in an array of vectors. The length of this array is based on the REGIONS parameter of the MFB
bus (i.e., the maximum number of packets in a word). This array of vectors is then used
for the calculation of the shift select signal and to recognize valid blocks in each channel unit.
The following figure illustrates the described principle of validating blocks (Figure 3.4).
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Fig. 3.4 Block Valid array

The next two auxiliary signals help to detect each packet’s boundary — SOF_ONE_HOT
(or SOF_OH) and EOF_ONE_HOT (or EOF_OH). These signals are in a similar format
to the Block Valid array, and their purpose is to validate the block where the packets begin and
end, respectively. Their purpose is to recreate the additional MFB signals after the MFB data
has shifted. These signals, along with the Block Valid, are generated using the Auxiliary Signals
component [37], which is part of the OFM library. For the purposes of the Frame Packer, this
component was adjusted to generate additional SOF_OH and EOF_OH signal. The last
auxiliary signal, extracted from the MFB bus, is the SOF_POS. Technically, this signal is not
processed, it is just passed in the form of an array into the component responsible
for the calculation of the shift select signal. As it is an offset of each packet within the MFB
word, it is included in the calculation of the shift select signal.
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The last two auxiliary signals are generated from the metadata — The Packet Length and
Channel ID. It is necessary to take into consideration gaps between the regular packets within
the Super-Packet in order to correctly calculate its final length. These gaps are caused by
packets being aligned to the blocks and it ranges from 1 to 7 items when the parameter
MFB_BLOCK_SIZE is set to 8. The easiest way to deal with this is to round up the incoming
lengths that are in the number of items to the next nearest block as the maximum size of the
empty space between the packets will not exceed the size of the block.

The last data to adjust is the Channel ID. Each Barrel Shifter must receive a valid
Channel ID in order to calculate the shift select signal and then distribute the shifted data
to the correct channel. For this purpose, a component called LAST_VALID is used. The
internal structure is shown in Figure 3.5. Its purpose is to pass MVB data if they are valid and
to store the last valid data if there is none on the input. This is necessary for the first Barrel
Shifter, which is processing only packets originating in one of the previous words.
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Fig. 3.5 LAST_VALID structure and expected output

In order to process data from multiple channels, it is necessary to handle each packet
independently. To differentiate between packets, the MFB_DROPPER component was used
to filter each one of them into a separate path. Its job is to mask the packets that started
in the region marked as drop. To do this, it uses a packet tracking mechanism called
packet_continues, which is a simple way of determining whether the packet ends in the MFB
region (or MFB word) or continues into the next one. For the purposes of the Frame Packer,
the inner signal that indicates packet continuation has been added to the output interface.
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The following figure (Figure 3.6) shows the internal structure of the Auxiliary Generator with
the described principle. The first DROPPER is set to drop all packets (except those
from the previous word). The others are set so that the second DROPPER only passes packets
from the with SOF in the first region, the third DROPPER only passes packets with SOF in
the second region, and so on. This makes it possible to distinguish between packets and to
process up the five packets in a clock cycle without pausing.

>/ REG |
PKT_CONT_REG fb,j
SOF & EOF
DROPPER(4] BLOCK VLD |_,
DROPPER[3] BLOCK VLD |,
DROPPER[2] BLOCK VLD |
DROPPER(1] BLOCK VLD |,
DROPPER(0] BLOCK_ VLD |
MFB_DATA
CH_REG
CHANNEL [0]
CHANNEL [3:0] [ | [REc]—
> MVB_LAST VLD
CHANNEL [4:1]
PKT_LNG[3:0] PKT_LNG[4:1]
»  ROUND UP REG

~_~ PKT_LNG[]
Fig. 3.6 Internal structure of the Auxiliary generator

3.3.3 Barrel Shifters

As mentioned above, the purpose of the Barrel Shifters is to minimize haps between packets.
The number of Barrel Shifters depends on the REGIONS parameter of the MFB bus, or rather,
on the number of packets that can be transferred over the bus in a single data word. That is
because each of these packets can be routed to a different channel, thus requiring a different
shift in order to match stored data further in the Channel unit. The previously generated
auxiliary signals are also shifted along with the data. These include the Block Valid signal of
each packet, SOF and EOF in one-hot format, and Packet Length. The packet length is valid
with the SOF, so the block with the length should be placed in the same place as the SOF.
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However, for simplicity the Length is copied into each block over the whole region where

the SOF is, and it is

extracted only from the block with the SOF.
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Fig. 3.7 Principle of the Barrel Shifter

3.3.4 Pointer Controller

The Pointer is a parameter that is included in the calculation of the shift select signal. Its purpose
is to track the status of an assembly register in the given channel. Its value points to the block
that will be used as a reference for aligning new data. The assembly register itself is used to
hold valid blocks until the entire word register is filled with blocks. The width of the pointer
register is calculated from the width of the MFB word or, rather, by the number of blocks and
is extended by one bit. The extra bit is used to indicate the overflow, which means that
the assembly register is full of valid blocks and is ready to be processed. The number of Pointer
units is equal to the number of generated channels. The following figure shows the internal
structure of each Pointer Control unit (Figure 3.8).
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Fig. 3.8 Structure of the Pointer Controller — 4 regions
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3.3.5 Barrel Shifters Controller

The principle of removing the empty spaces between packets is based on rearranging packet
blocks and matching them after each other. This requires a register inside each channel that
stores the incomplete words. In the scope of this thesis, it will be referred to as the Assembly
register. The task of the Barrel Shifter Controller is to calculate the shift value for each Barrel
Shifter (packet), so they do not overwrite any stored blocks, nor leave any empty blocks.
The way the shift select signal is calculated is further described in this section.

Let’s assume there is only one region and one channel to work with. The first packet that is
processed after reset must be aligned to the beginning of the MFB word. This means that
the shift of the first word with the valid blocks depends only on the SOF_POS of the incoming
packet as it is a position of the first packet block within the word. Note that this packet is
processed by the Barrel Shifter with index = 1.

TX_SEL[1] = SOF_POS|[1] [blocks] (3.1)

The pointer indicating the status of the assembly register is incremented by the number
of valid blocks in the first word. Now the incomplete word is waiting in the assembly register
to be completed, and the pointer is pointing to the free block to which the next valid blocks
destined for this channel would be stored. Note that this part of the packet is going to be
processed by the Barrel Shifter with index = 0 (assuming packet from the first word continues
to another). Since the packet can’t start in the first Barrel Shifter and continues for the beginning
of the next word, the SOF_POS[0] is always zero. Based on this, the new shift select value is
calculated as follows:

TX_SEL[0] = SOF_POS[0] — PTR [blocks] (3.2)

Note that the result of this equation will end up in negative numbers, but since the signal is
unsigned, the result will underflow and end up in the range 0 — 7 (for configuration
MFB#(1,8,8,8)). This underflow value is still valid and suitable as the shift select value.
The last case occurs when there are two packets in the word (one ends and the second begins).
Both are destined for the same channel. When calculating the second packet shift, the number
of valid blocks of the first packet in the word must be taken into consideration. Otherwise,
the blocks would overwrite each other resulting in loss of the data. This results in the following
calculation:

TX SEL[1] = SOF_POS[1] — (PTR + sum(Block_Valid[0])) (3.3)

The new alignment is defined by the Pointer and the number of valid blocks of the packet
ending in the same word. The timing diagram of this process is shown in Figure 3.9. The signal
values are in the binary format. The input is labeled RX_* and the output is labeled TX_*.
The first clock is the beginning of the green packet, which starts in the fifth block of the MFB
word. The shift select signal with the same value as SOF_POS[1] is generated in TX_SEL[1].
The next word is full of valid blocks belonging to the green packet from the previous clock
cycle. The shift select signal is based on the value of the pointer and is processed by the first
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barrel shifter. In the following cycle, there are two parts of packets - green and blue. The green
one ends there, while the blue one begins. For each part of the packet a separate shift select
signal is generated. Note that the second select signal must take into account the number of the
last valid blocks of the green packet. The last part of the blue packet arrives later and contains
only the last part of the blue packet. This part is handled by the first barrel shifter, and its select
signal is based on the value of the pointer.
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Fig. 3.9 Timing diagram of generating shift select signal

The shift select calculation described above can be represented as a digital circuit which is
shown in Figure 3.10. Each BS_CALC block uses an equation derived from the previous
example. The first BS_CALCJ0] only considers the Pointer parameter in the calculation. Other
parameters, although connected, are set to zero. This has been added to make this VHDL
component generic, so it can be used multiple times if the generic number of regions is changed
between 1 and 4.
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y
BS_CALC(0) ¢ RX_CH_PTR
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Fig. 3.10 BS_CTRL — One region and one Channel
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To support multiple regions, two major changes were made. In the initial version,
the BS_CALC with index = 1 must have taken into account the sum of the valid blocks
of the previous packet. In the extended version, each BS_CALC component must do the same,
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but with each packet that may occur in the data stream. For this reason, the number of valid
blocks of packets that have been processed by BS_CALC components with lower index must
be summed. The second major change is within the BS_CALC itself. Since the SOF_POS is
only valid for the given region, it has to be corrected for BS_CALC components handling
packets from the second region onwards. This is done by adding an offset equal to the number
of blocks in the previous regions. Therefore, the final calculation is as follows:

TX_SEL[n] = (n — 1) - MFB_REGION _SIZE + SOF_P0OS[n]

(3.4)
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Fig. 3.11 BS_CTRL - Four regions and one Channel

The last step is extending the component to support multiple channels. This is done by
adding a new input that indicates which channel each Barrel Shifter is processing. This input is
called RX_CHANNELS and it is an array with a Channel ID value for each BS_CALC.
This number is then used as a select signal to map the Pointer of the assembly register
from the given channel to the calculation. Similar operation is done with each sum of valid
blocks. In this case a demux is used. This component forwards the input to one of the outputs
(channels) and others will be set to zero. This is necessary in cases when there are multiple
packets each heading to different channel. Without demux, all these signals would be
considered into calculation even though the packet is not there. This would have resulted
in assembled word whose parts are invalid. At the input of the BS_CALC all these demux
output are merged again with select signal from RX_CHANNELS. By doing this it is possible
to catch cases when there is packet in the first and fourth region heading to the same channel as
the valid blocks from the first region will propagate up to the fourth BS_CALC. The following
figure shows an extended version of the initial design (Figure 3.12).
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Fig. 3.12 BS_CTRL - Four regions and four Channels

3.3.6  Demux

The main purpose of the demuxes is to route auxiliary signals only to the destined channels.
Each Barrel Shifter has its own DEMUX, whose select signal is the Channel 1D associated with
the given Barrel Shifter (or packet). Note that the demux is required only for the auxiliary
signals. The data from the Barrel Shifters can be routed directly to each channel, as the Block
Valid signal is responsible for the correct selection.

3.3.7 Channel — Packet Accumulator

The purpose of each Channel is to complete a Super-Packet from the incoming blocks
with the same Channel ID and to ensure that it reaches the length set by the generic parameter.
But the completion itself is not enough as the data would be without a context. For this reason,
a MFB protocol must be recreated and must match with the SOF/SOF_POS of the first packet
and EOF /EOF_POS of the last packet within the Super-Packet. For this purpose, the following
structure has been designed to assemble the blocks coming from the Barrel Shifters and to
decode their auxiliary signals.

At the input of the Channel component, there is an array of multiplexers whose task is
to select valid blocks from each Barrel Shifter. For the MFB configuration MFB#(1,4,8,8),
there are four two-input muxes (one for each block) whose select signal is generated
in the MUX_CTRL subcomponent. The select signal for each multiplexer is encoded
in the Block Valid array. Since the bits in the array do not interfere (thanks to the demux),
the select signal is extracted as the index of the array whose block bit is set high.
The same principle applies to the auxiliary signals (SOF_OH, EOF_OH, LNG).
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Fig. 3.13 The internal structure of the channel unit — Configuration MFB#(1,4,8,8)

Once the valid blocks have been selected, each MUX output is routed to the assembly
register and to the DATA_SEL component. If the number of incoming valid blocks does not
fill the data word, the incoming blocks are saved in the assembly register. To know which
blocks to save, the value of the Pointer is used to lock the valid blocks until the word is ready
to be processed. The DATA_SEL component is used to handle any overflow. The following
figure (Figure 3.14) illustrates how the blocks are processed when the assembly register
overflows. The blocks are shifted in such a way that the overflowed blocks are saved in the
assembly register, and those that make up the word are selected by the DATA_SEL component.
The overflow signal itself is used to indicate whether the word is ready or not, and the pointer
is used to select the blocks that make up the word.

Asssembly register

5
INPUT 6 DATA_SEL
2 5
3 6
0 > 0
1 > 1

Fig. 3.14 Overflow processing

When the data word is complete, SOF_OH and EOF_OH are converted back to MFB
control signals. That is SOF, EOF, SOF_POS and EOF_POS. This is done by converting
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the bit that is set high to its index within the vector. Note that only one of these bits can occur
in each region. Finished and aligned packets are sent to the FIFO where they wait
until the Super-Packet is completed.

The last auxiliary signal to be processed is the length of the regular packets. This is extracted
from the block where the SOF bit is set high. The length is then passed together with SOF and
EOF to the SPKT_LNG component. The task of this component is to count the number
of packets in the FIFO and sum their lengths. If the sum exceeds the minimum length
of the Super-Packet, it sets the internal SRC_RDY signal to notify FIFO_CTRL that the Super-
Packet is ready. The number of packets to be read from the FIFO and the length of the finished
Super-Packet are sent along with this SRC_RDY signal. A timeout signal is also connected
to ensure that packets are not stuck in the Channel for too long. When the timeout triggers,
the Super-Packet is marked as ready, even though the desired (minimum) length has not yet
been reached. The timeout component continuously checks the status of the register, and if
the last valid block is marked with EOF, the timeout counter starts counting. The counter does
not begin counting if there is an incomplete packet.

The last part of the Channel component is FIFO_CTRL. Its task is to wait
for the SPKT_LNG to set SRC_RDY high and load its data. Once it has all the data it needs
to operate, it starts to read packets from FIFO. Its task is to pass the Super-Packet length
to the output of the Channel component and to create new MFB control signals, such as SOF
or EOF, to form a Super-Packet. These control signals are created by masking the SOFs or
EOFs of small packets coming from the FIFO. Note that this description is given
for the MFB(1,4,8,8) configuration, but the component can handle more demanding
configurations, such as MFB(4,8,8,8).

3.3.8 Merger

Once the Super-Packet has been created, it needs to be propagated to the output MFB stream.
The merge of the several MFB streams is usually done by a component called
the MFB_MERGER. Initially, this version, which is generally available in the OFM library,
was used. However, it was unsatisfactory in terms of resource consumption. This was due
to the structure of this component, which covers many scenarios that do not occur in this case.
For this reason, a simplified version of this component was created. The internal structure
of the Frame Packer’s MERGER has been adapted to work as the larger multiplexer
with the internal select signal. This merger takes advantage of the properties of Super-Packets
and treats them as if they were carried over a single-region bus, which is, however, extended
to a larger width. The select signal for this merger is internal and switches between the inputs
(channels) that are marked as ready and gives each input the same opportunity to send its
Super-Packet. After the Super-Packet has been sent, it tries to switch to another input marked
as ready. Since this component knows from which input it is reading the data, the Channel ID
is added to each packet’s metadata. Together with the packet length, this metadata is sent to
the MVB FIFO, which creates MVB headers for the Super-Packets.
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4 TESTING

After designing the component, it was essential to test whether the proposed architecture
of the Frame Packer fulfils the requirements outlined in Chapter 3.1. Firstly, a set of functional
tests was performed to verify functionality of the VHDL code in corner cases. Later,
the component implemented into target FPGAs was also tested on real hardware to ensure that
timing requirements were met and that the resources required did not exceed the resources
available on the FPGAs. Finally, performance tests were executed to ensure that the component
is not blocking the traffic and meets intended throughput requirements. The performance test is
also essential as the objective of this component was to increase small packet throughput via
DMA and PCle while not affecting performance for big packets. Although the aim of this thesis
Is to achieve 400G throughput, the 100G version was also tested. The principle and VHDL
models are the same for both designs, but some cases may differ. These cases needs to be tested
as well, since both versions are required to work. The reason for this is that lower throughput
requires fewer resources, allowing the smaller and cheaper FPGAs to take advantage of this
design. All tests that verify the functionality of the design are described in this chapter.

4.1 UVM Verification

For the purpose of functional testing, verification was implemented using the Universal
Verification Methodology (UVM). The UVM is generally used to test the NDK components,
as it is widely supported within the NDK platform. Its reusability allows drivers and monitors
to be reused for NDK-specific protocols (MFB, MVB, and MI). Many tests, such as the
compliance of the interfaces with the MFB protocol, are already implemented as a standard set
of tests in the OFM library. The remaining tasks were to set up a verification environment,
implement a reference verification model of the Frame Packer and define what the component
should be able to do.

4.1.1 Test Environment

In the UVM verification, the test environment typically includes components for handling
communication with the Device Under Test (DUT) (monitor and driver) and component
for evaluating that communication (scoreboard). These components are specific for each type
of interface. The ones for the MFB and MVB interfaces were already available in the OFM
library. However, for the MVB, the packet length must be based on the actual length
of the packets sent to the DUT. Otherwise, the length would be random and therefore useless
in the context of the DUT. Because of this requirement, the standard sequencer can only be
used for the Channel ID. Therefore, the lengths that go to the MVB interface are extracted from
the MFB sequence items in the generator. The following figure illustrates the structure
of the environment for the test of the Frame Packer (Figure 4.1).
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Fig. 4.1 Test Environment for the functional verification

4.1.2 Scoreboard

The role of the scoreboard is to verify that the data returned by the DUT is correct. To do this,
a model of the Frame Packer is required as a reference for this evaluation. The simplest way to
create a model would be to use the minimum length that all Super Packets should have and start
concatenating packets from the same channel. However, this is not possible due to the timeout
that can occur in the DUT. When the timeout is triggered, the currently accumulated packets
are marked as a Super-Packet, even though the length has not reached the minimum size.
This would not be easy to implement in the model as it is difficult to simulate the timeout in
the DUT. This is due to the fact that verification processes entire transactions (packets) rather
than data words like the DUT. For this reason, a probe is implemented instead. This probe is
connected to each channel unit of the Frame Packer and looks at the number of packets
processed and the number of packets that make up the Super-Packet. Then the model only
concatenates the set number of packets from the given channel as reported by the probe.
In addition, there is no need to test the timeout mechanism of the Frame Packer, as the packet
length would be different, or the packets would be stuck in the design if the timeout failed.
In the latter case, the timeout implemented in the comparator of the verification would trigger
an error. This comparator is available in the OFM library and is used to compare the data itself.
One of its features is that there is an implemented timeout which raises an error if the data
from the DUT hasn't arrived within a specified time.
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To test the output MVB interface, a simple if statement has been added to check that the
size of the packet received is the same as the length specified in the MVB metadata.
The protocol of each bus is controlled by a built-in mechanism called a Property Check, which
is implemented in the testbench. Its task is to detect any violation of the protocol by checking
control signals of the given bus. These methods guarantee the functionality of the Frame Packer
and the integrity of the data.

For performance testing, the scoreboard implements the speed meter. Its only task is
to measure the input and output speed. The measurement is performed periodically every 10 us
of simulation time. This method does not give the exact throughput of the DUT, but it does give
a pretty good insight into the state of SRC_RDY at the output. This flag indicates the readiness
of the DUT to send data, i.e. whether it is able to handle new data or not. The input speed is
used as a reference, as the input speed also influences the output performance. Summary
statistics, such as mean and standard deviation, have also been added in order to evaluate
the measured data properly.

4.1.3 Tests

In order to verify the functionality of the Frame Packer, it is necessary to define a set of test
cases that cover all the requirements of the component as defined in Chapter 3.1. It would be
highly impractical to test all the combinations that can occur on the input, as this number
approaches infinity, therefore it is necessary to define a plan. This plan is called the verification
plan and is usually based on the expected functionality of the system. For the Frame Packer,
these requirements are in Appendix A and are defined as follows.

The first requirement (REQ_0) is to concatenate the packets so that they behave as one
Super-Packet. This requirement is essential for the Frame Packer to work properly. The second
requirement (REQ_1) is the alignment of the packets within the Super-Packet. The verification
should be able to ignore empty spaces when comparing each byte of the Super-Packet. REQ_2
refers to maximum length of the packet, which is defined by a generic parameter Maximum
Transfer Unit (MTU). If this requirement is violated, the DMA will most likely get stuck.
REQ_3 considers the size of the Super-Packet that the Frame Packer tries to reach. It is set by
a generic parameter. REQ_4 refers to the number of channels. The goal was to create a 400G
version. This speed requires at least 32 channels. As the design is available for 100G (which
can work with fewer DMA channels), the number of channels can also be set by a generic
parameter. REQ _5 is called Channel Coherence. This requirement is essential to the operation
of the digital circuit as the packets within the Super-Packet must have the same Channel ID.
This requirement is extended by REQ_6 which restricts packet overtaking within the channel.
Packets must be sent in the same order as they were received at the input. REQ_7 prevents
packets from getting stuck in the channel for too long by using the timeout. This problem occurs
when the Super-Packet is not assembled, and no other incoming packets have the same channel
ID. The timeout can be set generically, so the verification should be provided for several
timeout periods. Requests from 8 to 10 are related to the functional test of the component, using
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different packet sizes. REQ_11 requests correct functionality of the previous tests for the MFB
configuration MFB#(1,8,8,8). REQ_12 requires the functionality of the previous tests for
the MFB configuration MFB#(4,8,8,8). The results are presented in the final chapter in
the Verification Results section (Chapter 5.1).

To verify the functionality of the Frame Packer, a test called ex_test is used. It uses a basic
sequence library available in the OFM repository. This sequence is partially configurable and
highly randomized. The sizes of the packets sent to the DUT are randomized by several
functions (Gauss, Increment, Decrement, Constant) to test the most common scenarios.
To utilize these sequences, it would be necessary to write specific drivers or monitors to handle
each bus interface. As the MFB (and MVB) interface is common for most of the components
within the NDK, the OFM library contains reusable agents that handle that. These agents
communicate directly with the signals on the respective interfaces of the DUT and also check
compliance with the bus protocols described in Chapter 1.1. In addition, the agent is able to put
random gaps between packets and align the packets within the word randomly. Similarly to the
randomization of data length in the sequence, the agents are also configurable and can generate
randomized traffic to test the DUT under different stresses.

Once the functionality of the component is tested (within the given requirements), it is
useful to have an insight into its performance. The ex_test is not suitable for this purpose as it
tries to test most of the cases that might occur. For this reason, another test has been
implemented that configures the agents and sequences in such a way that the bus is fully
utilized. To push the DUT to its limits, a test called speed was used. This test sends the data to
the DUT as fast as possible and without spaces between the packets. Its only randomized
parameter is the length of the packets. Gaps between packets should be minimal or non-existent.
Using the speed meters in the scoreboard, it is possible to determine whether the component is
able to handle full traffic.

4.2 Hardware Test

Even if the Frame Packer works in the simulation as a standalone module, this does not
necessarily mean that it works in the target hardware. The main reason for the hardware tests is
to measure the real performance of the component within the NDK, as the throughput provided
by the verification is only an approximation.

To test any application, it is necessary to implement it in an environment similar
to the final typical system. The NDK-APP-Minimal design is used for this purpose.
As the name suggests, this design is NDK-based and is equipped with the minimal possible
application core (see Chapter 1) in order to function. Its only purpose is to provide
interconnection between the DMA and Ethernet modules. As the Frame Packer should be
placed before the DMA module (in the RX path) to measure its real performance,
the application core is a suitable place for testing. To distribute packets to different DMA
channels, the app-core is equipped with a channel router. This component enables the user
to modify the MVB header of each packet to route the packets in a couple of different modes
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such as a round-robin distribution mode. The last component present in the test environment is
called the MFB_PIPE. This component serves as a register for the MFB bus and helps
in the final build of the design. The customized Application Core is shown in the figure below
(Figure 4.2) and is named as NDK-APP-FramePacker in order to distinguish
it from the minimal NDK design.

APP-CORE

Channel ID
Packet Length

Channel

Router |
ETH_STREAM

Frame
MFB_PIPE [—» o -\ or » DMA_STREAM

Fig. 4.2 Implementation of the Frame Packer in the Application Core

To test basic functionality, the NDK is equipped with a set of debug components.
These include hardware packet generators, speed meters, debug counters, and configurable
switches. Control of these integrated features is achieved using software tools, such as the NDP
(Netcope Data Plane) and NFB (Netcope FPGA Board) tools. The NDP tools are used to send
and read data to/from the host PC from/to the FPGA card using the PCl-express (DMA).
The NFB tools are used to access the control registers of the internal components (switches,
counters...). These registers are accessed via the MI network (see Chapter 1).

One of the debug components used to test the performance of the Frame Packer is called
the Generator Loopback Switch (GLS). This component is located between the Application
Core and the DMA modules and allows debugging of the NDK using, as the name suggests,
packet generators, loopbacks, and switches. To measure the speed, it is also equipped
with speed-meters, which are basically counters of valid bytes that can be accessed using NFB
tools. The real speed is evaluated by the software with the knowledge of the frequency
at which the FPGA design operates. The internal structure of the GLS is shown
in the Figure 4.3.

In this test, the GLS is configured as follows. The MUX D is set to use the TX hardware
generator. It would be possible to use software-generated packets at this point, but this would
affect the throughput due to the heavier overall load on the system (PCle, CPU, RAM).
The MUX B is set to pass data from the generator to the Network module, where an internal
loopback is located to return the data to the RX pipeline. This loopback is also configured using
the NFB tools. When the data stream comes back, it goes through the application core
(Frame Packer) and through MUX C and MUX A. At this point, the data stream flows
to the software via DMA and PCI Express Modules. The throughput is measured using speed
meters that are connected to the MI and controlled by MI requests from the NFB tool.
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Note that the software (or any other part) does not check the correctness (integrity)
of the received packets. This test only evaluates the throughput of the design.
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Fig. 4.3 Structure of the Generator Loopback Switch
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In order to control individual registers in an automated way, there is a Python script
available in OFM that allows the user to measure throughput with a single command. This script
is called gls_mod.py and is able to output the measurement data into a .csv file. The results
of this measurement are summarized in the following chapter.
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5 RESULTS

The last chapter of this thesis summarizes the results of the tests presented in the previous
chapter. In addition to the functional test, the results of the performance within the verification
and hardware are presented as well.

5.1 Verification Results

The functional test of the proposed design has met all the requirements described in the previous
chapter. These requirements are listed in Appendix A in the form of a table. Table 5.1
summarizes the results of the testing including the method used for testing the requirement.

Table 5.1 Results of the Verification

REQ ID REQ Name Test (Chapter 4.1.3) Status
REQ O Packet Concatenation test::ex_test PASS
REQ_1 Packet Alignment test::ex_test PASS
REQ_2 Maximum Packet Size test::ex_test PASS
REQ 3 Optimal Packet Size test::ex_test PASS
REQ 4 Multiple Channels test::ex_test PASS
REQ 5 Channel Coherence test::ex_test PASS
REQ 6 Channel Order test::ex_test PASS
. test::ex_test + TIMEOUT = 32,
REQ 7 Timeout eebex ei 024, 4095 PASS
REQ 8 Small Packet Test test::ex_test + MAX_SIZE = 128 PASS
REQ 9 Big Packet Test teSt::eX—teS;:*';g' N_SIZE = PASS
REQ 10 Random Size test::ex_test PASS
REQ 11 One Region test:;ex_test + REGIONS =1 PASS
REQ_12 Four Regions test::ex_test + REGIONS =4 PASS
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Although the verification has covered all test cases, it does not necessarily mean the design
is bug-free. There may still be combinations that weren't tested or thought of. For this reason,
a "test of the test" was performed in the form of code coverage. This method can give feedback
on the quality of the verification by returning a percentage of the code checked during
the verification runs. This percentage includes covered branches, conditions, signal toggles,
statements, or even FSM transitions.

Questa Coverage Report Summary

0 d pe ») 0 d
Assertions 1 1 0 100%
Branches 1192 1184 8 99.32%
Conditions 82 76 6 92.68%
Expressions 66 45 21 68.18%
FSM States 6 6 0 100%
FSM Transitions 12 12 0 100%
Statements 4089 4067 22 99.46%
Toggles 962 927 35 96.36%

Fig. 5.1 Report of the Code Coverage — Questa Sim

The report shown in Figure 5.1, generated by Questa Sim, has returned a coverage
of 94.5%. This result was obtained after excluding all coverage types that are not relevant
to the verification of the Frame Packer. For example, this was a generic input
of the subcomponents (such as the DEVICE name) or the toggle of the reference signals
(SOF_POS(0)). The remaining 5% might appear like a big number, but it is (ironically) caused
by parts of the code that were added to fix errors found by the ex_test with different seeds.
In conclusion, there is still room for improvement in the verification, but it would be
overwhelmingly time-consuming, as these cases were detected in specific scenarios that are not
so easy to replicate.

Note that the coverage is merged from multiple test runs. This was performed using
multi_ver.py, a Python script for running multiple tests with different generic parameters.
In this case, the number of regions of the MFB word was changed, along with the different
timeout length and Super-Packet size.

To evaluate the performance within the verification, a speed-meter located in the scoreboard
was used. This speed-meter is a simple construct that counts the number of bytes received
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in the specified period of the simulation time. At the end of the verification, the function returns
a set of statistical values such as minimum (min), maximum (max), average (avg) and standard
deviation (st_dev). These results are given for the output speed and length. For testing purposes,
the value of the generic parameters was selected as follows. The FIFO accumulating Super-
Packets in each channel is set to 512 items. This is 131072 bytes of memory per channel in the
case of 4 regions and 32768 bytes for 1 region. This FIFO depth was chosen as it is the most
efficient for the utilization of the BRAM blocks. The TIMEOUT was set to 4096 clock cycles
as this resulted in best performance in previous tests. The number of channels was chosen based
on the real application requirements for the given throughput.

The Table 5.2 and Table 5.3 summarize the performance results for the 100G and 400G
versions in the speed test verification. The tables show the statistical value for the output speed
and packet length for the given parameters SPKT_SIZE_MIN and FRAME_SIZE_MAX.
The SPKT_SIZE_MIN parameter represents the length of the Super-Packet that is being
targeted. FRAME_SIZE_MAX represents the maximum length of the INPUT packets.
The minimum value is set to 64B as this is the minimum length of the Ethernet packet.
The length of the input packets is randomly distributed within the set range. The purpose of this
parameter is to give an insight into the performance in different length ranges. Note that
the throughput value is only a hint to whether the designed architecture can handle the target
speed or not. The actual throughput can be obtained from the hardware performance test,
the results of which are presented in the following section.

Table 5.2 Results of Verification performance test — 100 G

REGIONS =1, TIMEOUT = 4096, FIFO_DEPTH =512, CHANNELS = 16
TX_Speed [Gbps] TX_Length [B]
min |max | avg |st_dev| min | max | avg | st_dev SPKT—?IIBZ]E—MIN FRAME—[??!]Z E_MAX
3 98 9% 9 96 1016 967 40 1024 128
0 100 99 8 104 2040 1987 87 2048 128
5 102 99 9 72 4088 4025 201 4096 128
7 102 99 11 | 168 8184 8066 656 8192 128
0 97 94 9 72 1024 780 165 1024 1024
1 100 98 9 | 456 2040 1742 215 2048 1024
5 102 100 8 744 4088 3700 307 4096 1024
7 102 101 9 392 8184 7799 446 8192 1024
17 102 98 11 72 8160 3673 2177 1024 8192
3 102 98 12 88 8184 3771 2068 2048 8192
1 102 99 10 | 96 8168 4625 1974 4096 8192
6 102 99 14 | 592 8192 5947 1354 8192 8192
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Table 5.3 Results of Verification performance test — 400 G

REGIONS =4, TIMEOUT = 4096, FIFO_DEPTH =512, CHANNELS = 32
TX_Speed [Gbps] TX _Length [B]
min | max | avg |st_dev| min | max | avg |st_dev SPKT_SIZE_MIN|FRAME_SIZE_MAX

[B] [B]

8 332 271 116 | 248 1200 862 113 1024 128
16 365 209 174 | 248 2232 1813 284 2048 128
12 388 307 136 | 496 4088 3837 440 4096 128
2 401 333 130 | 408 8184 7427 1599 8192 128
18 321 309 12 | 128 1208 775 176 1024 1024
12 365 337 80 | 904 2040 1736 249 2048 1024
9 389 364 81 | 944 4088 3707 357 4096 1024
5 404 376 87 |800 8184 7712 887 8192 1024
26 398 366 74 | 88 8176 4074 2620 1024 8192
9 398 355 97 | 96 8080 4877 1945 2048 8192
29 399 385 32 | 83 8192 4718 1711 4096 8192
30 398 360 90 |1616 8176 6002 1181 8192 8192

The output throughput of the Frame Packer is given by the effectiveness of the merging
mechanism. If the final Super-Packet is smaller, the MERGER must read from each channel
more often. This creates overhead because there are empty spaces between Super-Packets.
This effect can be reduced by making the Super-Packet larger, as the results from the previous
tables (Table 5.2, Table 5.3) suggest. Especially for smaller input packets.

5.2 Implementation Results

Since the theoretical functionality of the Frame Packer has been verified, it would make sense
that it would work in hardware. In reality, however, it may not be that simple, as the resources
and maximum frequency on the FPGA are limited. The Frame Packer is configurable, so two
versions were implemented: 100G and 400G with the required number of channels for each
speed. Results for the 100G version are available for both Intel and AMD FPGAs. The 400G
version is only available for Intel's Agilex family of FPGAs. This part of the thesis is dedicated
to the implementation of the mentioned versions on the FPGA with and without NDK minimal
design. The version of the design with the Frame Packer is called NDK-APP-FramePacker
to distinguish it from the NDK-APP-Minimal. The last part of this chapter is dedicated to testing
NDK-APP-FramePacker on real hardware to evaluate its real performance. The following
tables present FPGA resource usage for the 100G version (Intel, AMD) of the Frame Packer.
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For such speed, at least 16 Channels are required.
Table 5.4 Frame Packer-100G & 16 Channels - Intel Stratix 10 1SD280PT2F551VG

Used Available Percentage
ALM 19352 933120 2%
ALUT 29376 N/A N/A
FF 17207 N/A N/A
M20K (BRAM) 225 11721 2%
DSP 0 5760 0%
Memory ALUT 256 N/A N/A
LAB 2647 93312 3%

Table 5.5 Frame Packer-100G & 16 Channels - AMD Virtex UltraScale+ xcvu7p

Used Available Percentage
LUT 26245 788160 3.33%
LUTRAM 160 394560 0.04%
FF 15983 1576320 1.01%
BRAM 128.5 1440 8.92%

The 100G version of the Frame Packer on the Intel device requires about 2% of the Adaptive
Logic Modules (ALMs), 30,000 Adaptive Look-Up Tables (ALUTS), and about 17,000 Flip-
Flops (FFs). Similar results for LUTs and FFs are also found on the AMD FPGA. These results
are positive when compared to the minimal NDK design (more to that later) and when
considering the impact on performance of the NDK system. While Intel’s BRAM utilization is
around 2%, AMD’s is close to 9%. This is due to differences in available BRAMs on AMD
FPGA and the current optimization of Frame Packer FIFOs for Intel’s M20K BRAMs.
BRAMs are a critical resource for NDK application development, and maximizing their
efficiency is important. In terms of timing, the maximum frequency that can be reached
on the Stratix 10 FPGA is 199.4 MHz, while the implementation on the UltraScale+ FPGA can
reach up to 213.17 MHz. Therefore, both implementations can run on the FPGA because
the frequency required for 100G transfer is 200 MHz.

The resources required for the 400G version are shown in the following tables. There are
three examples of resource usage for three different configurations: 8 channels, 16 channels,
and 32 channels. As you can see, as the number of channels in the design increases, so does
the number of resources and with that the timing requirements as well.
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Table 5.6 Frame Packer-400G & 8 Channels - Intel Agilex AGIB027R29A1E2VRO0

Used Available Percentage
ALM 84964 912800 9%
ALUT 131869 N/A N/A
FF 65110 N/A N/A
M20K (BRAM) 426 13272 3%
DSP 0 8528 0%
Memory ALUT 960 N/A N/A
LAB 10876 91280 12%

Table 5.7 Frame Packer-400G & 16 Channels - Intel Agilex AGIB027R29A1E2VR0O

Used Available Percentage
ALM 139194 912800 16%
ALUT 223091 N/A N/A
FF 76247 N/A N/A
M20K (BRAM) 850 13272 6%
DSP 0 8528 0%
Memory ALUT 1024 N/A N/A
LAB 18774 91280 21%

Table 5.8 Frame Packer-400G & 32 Channels - Intel Agilex AGIB027R29A1E2VR0

Used Available Percentage
ALM 253479 912800 28%
ALUT 409099 N/A N/A
FF 127722 N/A N/A
M20K (BRAM) 1698 13272 13%
DSP 0 8528 0%
Memory ALUT 1088 N/A N/A
LAB 34083 91280 37%

The first thing to notice is that the FPGA used is much larger than that used in the 100G
version. The 32-channel version of the Frame Packer would require 28% of the ALMs, 409,099
ALUTSs, and almost 13% of the BRAMSs. The timing requirements for this version are so high
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that it would only run at 92.36 MHz. The 16-channel version requires 16% of the ALMs,
223,091 ALUTs and 6% of the BRAMs. The maximum frequency goes up to 156.99 MHz.
Still not enough, but it shows a trend that can be used for the next generation of Frame Packer.
The last version with 8 channels needs 9% of the ALMs, 131,869 ALUTs, and 3%
of the BRAMs. The maximum frequency is 207.81 MHz, which meets the timing requirements.
These results point to the main problem with the Frame Packer - the channels. Each of them
consumes a significant number of resources, which leads to problems when more channels are
used. This brings us to the idea of a next generation Frame Packer where a number of channels
are set to be shared or dynamically allocated. This would reduce the resources needed and
improve timing requirements.

The final part, which involves building the design, are the tables summarizing the resource
usage of NDK-APP-Minimal and NDK-APP-FramePacker. The following table shows
the 100G build for the SmartNIC N6010 FPGA card. The FPGA on this card
(Intel(R) Agilex ™ AGFO014) is slightly smaller than the one used in the previous builds but
has better timing characteristics. The aim of this part is to provide a context of the size
of the Frame Packer within the NDK design.

Table 5.9 NDK-APP-Minimal - 100G SmartNIC N6010

Used Available Percentage
ALM 198706 487200 41%
ALUT 193792 N/A N/A
FF 332198 N/A N/A
M20K (BRAM) 1140 7110 16%
DSP 16 4510 <1%
Memory ALUT 25066 N/A N/A
LAB 24960 48720 51%

Table 5.10 NDK-APP-FramePacker - 100G SmartNIC N6010

Used Available Percentage
ALM 227819 487200 47%
ALUT 237332 N/A N/A
FF 364616 N/A N/A
M20K (BRAM) 1372 7110 19%
DSP 16 4510 <1%
Memory ALUT 25808 N/A N/A
LAB 28913 48720 59%
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The 100G version of the NDK-APP-Minimal requires at least 41% of the ALMs, 193,792
of the ALUTSs, and 16% of the BRAMSs. With the addition of the Frame Packer, these numbers
jump to 47% for ALMs, 237,332 for ALUTS, and 19% for BRAMs. These numbers suggest
the Frame Packer is suitable for the 100G transfer rate.

The last build would be for the 400G design, but unfortunately this build failed due
to the high demands on the FPGA resources. Quartus was unable to route the design within
the NDK. For context, only the minimal version of the 400G NDK design is presented.
The only board available for this build is the XpressSX AGI-FH400G with Intel Agilex I-Series
FPGA which is proportionally bigger than FPGAs used for 100G transfer rate. Similar to
the 100G version of the NDK, the 400G design uses about 50% of the logic resources and 20%
of the BRAMs.

Table 5.11 NDK-APP-Minimal - 400G XpressSX AGI-FH400G

Used Available Percentage
ALM 457655 912800 50%
ALUT 445394 N/A N/A
FF 739740 N/A N/A
M20K (BRAM) 2458 13272 19%
DSP 20 8528 <1%
Memory ALUT 50951 N/A N/A
LAB 58481 91280 64%

5.3 Hardware Test Results

The last part of this section is dedicated to performance testing using the previously created
builds for the N6010 (Intel) and NFB-200G2QLP (AMD). Note that the card with the AMD
FPGA only runs at 100G, even though it is marked as 200G. Due to the high resource usage
of the 400G Frame Packer version, only the 100G version is tested.

The first figure (Figure 5.2) shows the throughput of the system versus the length of the
packets sent by the NDK design. This design was uploaded to the N6010 and tested on machines
with different processor types. From left to right is the performance of the NDK-APP-Minimal
on the machine with an Intel processor. The performance on the smaller packets is low due
to the handling of PCle credits and DMA descriptors. The same applies to the minimal design
on the machine with an AMD processor. The difference between them is due to the nature
of handling communication. The red line in the graph represents the ideal Ethernet throughput,
and just above it is the line showing the throughput with the NDK-APP-FramePacker design.
The reason it performs better than the theoretical Ethernet is due to the way the NDK measures
the data flow. The speed meter does not unpack the Super-Packets, so the empty spaces within
the Super-Packet are also counted. These empty spaces have a greater effect on the smaller
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packets, while the large packets are able to suppress this effect. Just for a reminder, these spaces
are there because of the block alignment.

Note that these tests were executed on host PCs named Sevar and Laurot. The Sevar is
equipped with the Intel(R) Xeon(R) CPU E5-2630 and 64GB of DDR4 RAM, while the Laurot
is equipped with the AMD EPYC 7402 24-core processor and 128 GB of DDR4 RAM. Both
use the PCle 4.0 to communicate with the FPGA card. The Frame Packer was tested on both
host PCs and performed equally well.
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Fig. 5.2 Hardware performance test — Intel FPGA (N6010)

The second measurement (Figure 5.3) is performed on the NFB-200G2QLP FPGA card on
a host PC called Emilion. This machine is equipped with an Intel(R) Xeon(R) CPU E5-2620
and 64GB DDR4 of memory. In contrast to the previous test, this card did not perform so well
compared to the Agilex family of FPGAs. This is unfortunate for the NDK, but great for
the Frame Packer, as the measurement proves that the designed component is able to boost
the performance even if the target card/system is not as powerful. Another difference between
these graphs is that the throughput of the 64B packets starts at 90 Gbps. This indicates that there
may be a problem with this measurement, such as an incorrect working frequency. This could
affect the measurement as it is the software that calculates the speed, and it uses an application
core frequency to do so. This measurement should therefore be taken with a grain of salt.
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CONCLUSION

The goal of this thesis was to gain a full understanding of the NDK framework and its specific
communication protocols in order to create a compatible digital circuit. The purpose of this
digital circuit was to accumulate packets from the same virtual lanes at transfer rates up
to 400 Gbps. The reason for creating such a digital circuit is that due to the transfer overhead
on the PCle and inefficient descriptor usage by the DMA controller, the throughput over
the PCle (DMA) is low when transferring small packets. Both beforementioned issues can be
reduced by creating larger units from multiple smaller packets. The digital circuit capable
of creating such units from the accumulated packets is called the Frame Packer.

The final design was achieved after creating several prototypes that helped uncover
the problem and take them into account when designing the current version. The obstacles
present in most of the prototypes were the control mechanism of the Frame Packer and
the amount of FPGA resources required. Problems with the management of the packet
alignment were solved by dividing the Frame Packer into several stages and a control unit that
performed a simple calculation at the end. The issues with the resources were mostly solved by
using integrated memory blocks (BRAMs) instead of common logic resources.

The final goal was to verify the functionality of the designed architecture using the UVM
methodology. For this purpose, a verification plan was created based on the requirements listed
in Chapter 3. These represent the minimum the digital circuit must meet to function properly
within the NDK. As concluded in the last chapter, the design has met all the requirements stated
in the verification plan. The last chapter also summarizes the code coverage and
the performance tests within the verification and hardware. The final result of the code coverage
is 94.5%. The verification performance test showed that the design is able to handle high-speed
transfers without slowing down the traffic. The performance test that used the real network card
proved the 100G version is able to increase the transfer rate for small packets significantly.

The 400G version of the Frame Packer also passed the verification.
As for the implementation, it was possible to implement an 8-channel variant that could operate
at 200 Mhz. When implementing the design in the NDK, a 400G design expects at least 32
channels (due to the DMA requirements). This makes it quite difficult to implement the Frame
Packer in the available FPGA because it requires many resources. Therefore, optimization is
needed to reduce the number of physical channels. This could be done by sharing a physical
channel with multiple virtual lanes.

In terms of real-world applications, based on the results, this component could be used
in monitoring high-speed networks, particularly networks up to 100 Gbps. That is because
the 100G version of the Frame Packer requires an adequate number of resources. On the other
hand, this component is not suitable for applications such as High Frequency Trading (HFT),
as this component increases the transmission latency. This is due to the nature of the component,
which is based on buffering and concatenating packets.
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SYMBOLS

Abbreviations:

ACK
AVMM
AXI
BRAM
BUT
CPU
CRC
DC
DDR
DLL
DLLP
DMA
DUT
FIFO
FPGA
FSM
GLS
IP
ISO
MFB
MI
MPS
MVB
NACK
NDK
NDP
NFB
OFM
(O8]
PC
PCle
PL
RAM
TL
TLP
UvM

Acknowledgement

Avalon Memory-Mapped Interface
Advanced Extensible Interface
Block Random Access Memory
Brno University of Technology
Central Processing Unit

Cyclic Redundancy Check

Direct Current

Double Data Rate

Data Link Layer

Data Link Laye Packet

Direct Memory Access

Device Under Test

First In First Out
Field-Programmable Gate Array
Finite State Machine

Generator Loopback Switch
Intellectual Property

International Organization for Standardization
Multi-Frame Bus

Memory Interface

Maximum Payload Size

Multi Value Bus

Negative Acknowledgement
Network Development Kit
Netcope Data Plane

Netcope FPGA Board

Open FPGA Modules

Open Systems Interconnection
Personal Computer

Peripheral Component Interconnect Express
Physical Layer

Random Access Memory
Transaction Layer

Transaction Layer Packet
Universal Verification Methodology
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Appendix A — Requirement Specification

ID Name Description
. Several packets behave as one. This requires correct
REQ 0 | Packet Concatenation
Q- set of SOF and EOF flags.
: The packets within the Super-Packet should be
REQ 1 Packet Alignment P WI_ ! up u
aligned to the block.
REQ 2 Maximum Packet The size of the Super-Packet should not exceed the
- Size length set by a parameter USR_PKT_SIZE_MAX.
. . The average size of the Super-Packet should be
REQ 3 Optimal Size verage siz up )
around set value.
The component should be able to handle packets
REQ 4 Multiple Channels destined for multiple channels. The number of
channels is generically set.
REQ. 5 Channel Coherence The Super-Packet is made of packets with the same
Channel ID.
The packets from the same channel should be in the
REQ _6 Channel Order same order in which they were sent to the DUT.
Overtake is not permitted.
REQ 7 Timeout The component sho.uld be at.)le to handle different
- durations of timeout.
The component should handle stress tests when only
REQ_8 Small Packet Test small packets are sent to the DUT. This test confirms
that the internal counters have correct length.
. The component should handle stress tests when only
REQ 9 Big Packet Test .
Q. 9 big packets are sent to the DUT.
REQ 10 Random Size The component should ha_ndle the combination of
small and big packets.
. The component should handle previous tests (REQ_0
REQ_11 One Region . . ) -
Q- gl — REQ_10) with configuration MFB#(1,8,8,8)
. The component should handle previous tests (REQ_0
REQ 12 Four R : . . -
Q- ourReglons — REQ_10) with configuration MFB#(4,8,8,8)

62




Appendix B — Structure of the FP Directory

—— frame packer/
—— Modules.tcl
—— synth/
L— Makefile
— uvm/
—— tbench/
— env/
—— env.sv
—— generator.sv
—— meter.sv
—— model.sv
—— pkg.sv
—— scoreboard.sv
—— scoreboard cmp.sv
—— sequence_ tb.sv
—— sequencer.sv
— info/
—— agent.sv
—— config.sv
—— monitor.sv
—— pkg.sv
—— sequence.sv
—— sequence_item.sv
—— sequencer.sv
—— tests/
—— pkg.sv
—— sequence.sv
—— speed.sv
—— test.sv
—— dut.sv
—— property.sv
—— testbench.sv
—— Modules.tcl
—— signals. fdo
— signals sig.fdo
— top level.fdo
—— ver settings.py
— fp auxiliary gen.vhd
— fp block vld.vhd
— fp bs calc.vhd
— fp bs ctrl.vhd
— fp bs per packet.vhd
—— fp_ channel.vhd
— fp_channel demux.vhd
— fp _data sel.vhd
—— fp_dropper.vhd
— fp fifo ctrl.vhd
— fp merger.vhd
— fp meta concatenate.vhd
— fp mux ctrl.vhd
— fp _ptr ctrl.vhd
— fp spkt 1ng.vhd
— fp timeout ext.vhd
— fp_ tmp reg.vhd
— fp_ver module.vhd
—— frame packer.vhd




