
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF MICROELECTRONICS
ÚSTAV MIKROELEKTRONIKY

HIGH-SPEED PACKET ACCUMULATION IN FPGA
VYSOKORYCHLOSTNÍ AKUMULACE PAKETŮ V FPGA

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. David Beneš

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Vojtěch Dvořák, Ph.D.

BRNO 2024

Termín zadání: 5.2.2024 Termín odevzdání: 21.5.2024

Vedoucí práce: Ing. Vojtěch Dvořák, Ph.D.

doc. Ing. Lukáš Fujcik, Ph.D.

předseda rady studijního programu

Diplomová práce
magisterský navazující studijní program Mikroelektronika

Ústav mikroelektroniky
Student: Bc. David Beneš ID: 220860
Ročník: 2 Akademický rok: 2023/24

NÁZEV TÉMATU:

Vysokorychlostní akumulace paketů v FPGA

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s open-source platformou NDK a sběrnicí MFB (Multi Frame Bus). Pro platformu NDK navrhněte
obvod pracující s pakety na sběrnici MFB a implementujte ho ve zvoleném jazyce HDL. Cílem tohoto obvodu
bude efektivně spojovat malé pakety ze stejných kanálů do větších celků (super-paketů). Propustnost
implementovaného obvodu by se měla v ideálních případech blížit k 400 Gb/s. Funkčnost implementovaného
řešení ověřte UVM verifikací. V závěru práce zhodnoťte dosažené výsledky a uveďte výhody a nevýhody
zvoleného řešení. Pro realizaci návrhu lze použít sadu skriptů a již existujících komponent v databázi společnosti
CESNET z.s.p.o.

DOPORUČENÁ LITERATURA:

According to recommendations of supervisor

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Date of project
specification:

5.2.2024
Deadline for
submission:

 21.5.2024

Supervisor: Ing. Vojtěch Dvořák, Ph.D.

doc. Ing. Lukáš Fujcik, Ph.D.
Chair of study program board

Master's Thesis
Master's study program Microelectronics

Department of Microelectronics
Student: Bc. David Beneš ID: 220860
Year of
study:

 2 Academic year: 2023/24

TITLE OF THESIS:

High-speed packet accumulation in FPGA

INSTRUCTION:

Study the open-source NDK platform and the MFB (Multi Frame Bus). For the NDK platform, design a circuit
working with packets on the MFB bus and implement it in the selected HDL language. The goal of this circuit is to
efficiently combine small packets from the same channels into larger units (super-packets). The throughput of the
implemented circuit should ideally be reach 400 Gb/s. Verify the functionality of the implemented solution by the
UVM verification. In the Master’s thesis conclusion, evaluate the results achieved and state the advantages and
disadvantages of the chosen solution. A set of scripts and already existing components in the database of
CESNET z.s.p.o. can be used to implement the design.

RECOMMENDED LITERATURE:

According to recommendations of supervisor

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Abstract
This paper presents the concept of a digital circuit that has the potential to reduce

the transmission overhead on the communication link between a high-speed network card with

FPGA and a host PC for small packets. This circuit is specifically designed for the NDK

platform developed by CESNET z.s.p.o., which is specified in the first chapter. The motivation

for writing this thesis is presented in the second chapter, which is dedicated

to the communication path between the host PC and the FPGA. The design of the resulting

digital circuit and its testing is described in the final part of this thesis.

Keywords
CESNET, NDK, MFB, 400 Gbps, FPGA, PCIe, DMA, Data shifts

Abstrakt
Tato práce popisuje návrh číslicového obvodu, který má potenciál snížit režii přenosu malých

paketů na komunikační lince mezi vysokorychlostní síťovou kartou s FPGA a hostitelským

počítačem. Tento obvod je určen speciálně pro platformu NDK vyvinutou sdružením

CESNET z.s.p.o., proto je první kapitola věnována její specifikaci. Motivace k sepsání této

práce je popsána v následující kapitole, která je věnována komunikační lince mezi hostitelským

počítačem a FPGA. Poslední část popisuje návrh číslicového obvodu a jeho testování jak

z pohledu funkčnosti, tak z propustnosti.

Klíčová slova
CESNET, NDK, MFB, 400 Gbps, FPGA, PCIe, DMA, Posuvy dat

Rozšířený abstrakt
Přenosové rychlosti dnešních počítačových sítí dosahují několika stovek gigabitů za sekundu.

To otevírá nové možnosti pro aplikace, které vyžadují rychlý a snadný přenos velkých objemů

dat, ale zároveň klade velké nároky na zpracování takového provozu. Jedním z nástrojů,

které dokážou takovýto provoz zpracovat, jsou síťové karty založené na čipech FPGA.

Jejich konfigurovatelnost umožňuje vytvořit firmware podle cílových požadavků, nebo

pro specifické aplikace upravit firmware již existující. V případě této diplomové práce se jedná

o platformu NDK (Network Development Kit) vytvořenou a udržovanou sdružením CESNET

z.s.p.o., která poskytuje prostředí pro práci se síťovým provozem na FPGA.

V rámci této diplomové práce je navržen číslicový obvod pro zpracování paketů na sběrnici

MFB (Multi-Frame Bus). Toto zpracování spočívá v efektivním spojení vícero malých paketů

ze stejného DMA kanálu do většího celku. Samotná sběrnice MFB je určena pro přenos dat

mezi dílčími komponentami v rámci NDK. Aby byl využit plný potenciál paralelního

zpracování na čipu FPGA, umožňuje tato sběrnice přenášet vícero paketů ve stejném

hodinovém taktu. K dosažení požadované propustnosti 400 Gb/s je MFB konfigurována tak,

aby byla schopna přenést čtyři nejkratší Ethernetové rámce najednou při pracovní frekvenci

200 MHz.

Motivací pro tvorbu takového obvodu je přenosová rychlost pro malé pakety mezi síťovou

kartou a hostitelským počítačem. Tato rychlost může v rámci NDK klesnou až o několik desítek

procent z důvodu velké režie přenosu. Ta je způsobena několika faktory, z nichž ty

nejvýznamnější jsou využití sběrnice PCIe a typ použitého DMA řadiče. Abychom tedy správně

využili dostupné prostředky, je vhodné odesílat větší celky a jejich obsah extrahovat

na procesoru hostitelského počítače. V rámci NDK se tyto větší celky nazývají Super-Pakety,

a aby jejich zpracování nebylo příliš složité, jsou koncipovány tak, aby mezi jednotlivými

dílčími pakety byly minimální mezery.

Teoretická část této práce čtenáře nejdříve seznámí s architekturou NDK a se základním

principem komunikace přes sběrnici PCIe pomocí DMA přenosů. V rámci první kapitoly,

věnující se NDK je uveden přehled jednotlivých komponent, ze kterých se platforma skládá

a specifikace datových sběrnic, které jsou pro ni typické. Jedná se především o sběrnice MFB,

MVB (Multi-Value Bus) a MI (Memory Interface Bus). Druhá kapitola se zabývá komunikací

přes PCIe a zaměřuje se na popis režie datového přenosu jak přes samotnou sběrnici PCIe,

tak i v rámci řadiče DMA. V praktické části této práce jsou definovány požadavky na cílový

obvod a jeho samotný návrh. Kapitola věnující se návrhu číslicového obvodu je rozdělena do

několika částí, počínaje popisem obecné funkčnosti a konče popisem jednotlivých částí obvodu.

Následující kapitola se věnuje funkční verifikaci, která ověřuje funkčnost obvodu

dle definovaných požadavků, a testům propustnosti. Tyto testy jsou rozděleny na dvě části –

první část je věnována měření propustnosti v rámci verifikace, která ověřuje, zda výsledný

číslicový obvod dokáže pracovat bez nutnosti brzdit vstupní rozhraní; druhá část se věnuje

měření propustnosti na reálné síťové kartě. Výsledky těchto testů ukazují pozitivní dopad

na propustnost malých paketů a jsou shrnuty v poslední kapitole.

Bibliographic citation
BENEŠ, David. Vysokorychlostní akumulace paketů v FPGA [online]. Brno, 2024 [cit. 2024-

05-09]. Dostupné z: https://www.vut.cz/studenti/zav-prace/detail/159926. Diplomová práce.

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav

mikroelektroniky. Vedoucí práce Vojtěch Dvořák.

https://www.vut.cz/studenti/zav-prace/detail/159926

Author’s Declaration

Author: Bc. David Beneš

Author’s ID: 220860

Paper type: Master’s Thesis

Academic year: 2023/24

 Topic: High-speed packet accumulation in FPGA

I declare that I have written this paper independently, under the guidance of the advisor and

using exclusively the technical references and other sources of information cited in the project

and listed in the comprehensive bibliography at the end of the project.

As the author, I furthermore declare that, with respect to the creation of this paper, I have not

infringed any copyright or violated anyone’s personal and/or ownership rights. In this context,

I am fully aware of the consequences of breaking Regulation S 11 of the Copyright Act No.

121/2000 Coll. of the Czech Republic, as amended, and of any breach of rights related to

intellectual property or introduced within amendments to relevant Acts such as the Intellectual

Property Act or the Criminal Code, Act No. 40/2009 Coll., Section 2, Head VI, Part 4.

Brno, May 20, 2024

 author’s signature

Acknowledgement
I would like to thank my supervisor Ing. Vojtěch Dvořák Ph.D. for his invaluable advice and

support. I would also like to thank Ing. Jakub Cabal for consulting this paper and his patience

with the constant flow of questions. Finally, I would like to thank Ing. Daniel Kondys for his

willingness to check the grammatical and factual aspects of this work.

Brno, May 20, 2024

 Author’s signature

7

Contents

1 NDK FRAMEWORK ... 11

1.1 NDK ARCHITECTURE .. 11
1.1.1 MI Bus ... 12
1.1.2 MVB Bus ... 14
1.1.3 MFB Bus ... 16

2 DATA TRANSMISSION .. 20

2.1 PCI-EXPRESS ... 20
2.1.1 PCIe Architecture .. 20
2.1.2 Efficiency of Data Transfer Over PCIe ... 22

2.2 DMA ... 24
2.2.1 DMA Transfers in NDK... 25

3 DESIGN OF THE ARCHITECTURE .. 27

3.1 DESIGN REQUIREMENTS .. 27
3.2 TOP LEVEL CONCEPT .. 29
3.3 COMPONENTS .. 30

3.3.1 Metadata Insertor .. 30
3.3.2 Auxiliary Generator .. 31
3.3.3 Barrel Shifters ... 33
3.3.4 Pointer Controller ... 34
3.3.5 Barrel Shifters Controller ... 35
3.3.6 Demux ... 38
3.3.7 Channel – Packet Accumulator ... 38
3.3.8 Merger ... 40

4 TESTING ... 41

4.1 UVM VERIFICATION ... 41
4.1.1 Test Environment .. 41
4.1.2 Scoreboard .. 42
4.1.3 Tests .. 43

4.2 HARDWARE TEST .. 44

5 RESULTS ... 47

5.1 VERIFICATION RESULTS .. 47
5.2 IMPLEMENTATION RESULTS .. 50
5.3 HARDWARE TEST RESULTS ... 54

CONCLUSION ... 57

8

FIGURES

1.1 The Simplified Architecture of NDK [5] .. 11
1.2 Timing diagram of write process on MI Bus .. 13
1.3 Timing diagram of read process on MI Bus ... 14
1.4 Structure of the MVB Bus .. 15
1.5 Port direction in SRC/DST_RDY logic .. 15
1.6 Timing diagram of communication on MVB Bus .. 15
1.7 Configuration of MFB Bus ... 17
1.8 MFB configuration – SOF & EOF example ... 18
1.9 MFB configuration – SOF_POS & EOF_POS example .. 18
1.10 Timing diagram of data transmission on MFB Bus .. 19
1.11 Transmission of frames on MFB Bus ... 19
2.1 PCIe Bus topology [21] .. 20
2.2 PCIe layers between two devices [24] .. 21
2.3 Communication on Data Link Layer .. 22
2.4 Packet sent over the PCIe [24] ... 22
2.5 Transfer inefficiency caused by Packet overhead – worst case .. 23
2.6 The DMA architecture over the PCIe bus [35] ... 26
3.1 The basic principle of the Frame Packer .. 28
3.2 Top Level view of the Frame Packer – 4 Regions, 4 Channels .. 29
3.3 Principle of Metadata Insertor .. 30
3.4 Block Valid array ... 31
3.5 LAST_VALID structure and expected output .. 32
3.6 Internal structure of the Auxiliary generator .. 33
3.7 Principle of the Barrel Shifter ... 34
3.8 Structure of the Pointer Controller – 4 regions ... 34
3.9 Timing diagram of generating shift select signal .. 36
3.10 BS_CTRL – One region and one Channel.. 36
3.11 BS_CTRL – Four regions and one Channel ... 37
3.12 BS_CTRL – Four regions and four Channels ... 38
3.13 The internal structure of the channel unit – Configuration MFB#(1,4,8,8) 39
3.14 Overflow processing ... 39
4.1 Test Environment for the functional verification ... 42
4.2 Implementation of the Frame Packer in the Application Core ... 45
4.3 Structure of the Generator Loopback Switch ... 46
5.1 Report of the Code Coverage – Questa Sim ... 48
5.2 Hardware performance test – Intel FPGA (N6010) .. 55
5.3 Hardware performance test – AMD FPGA (200G2QLP) .. 56

9

TABLES
1.1 A list of signals that define MI Bus – Slave perspective .. 13
1.2 A list of signals that define MVB Bus .. 14
1.3 A list of signals that define MFB Bus .. 16
5.1 Results of the Verification .. 47
5.2 Results of Verification performance test – 100 G .. 49
5.3 Results of Verification performance test – 400 G .. 50
5.4 Frame Packer-100G & 16 Channels - Intel Stratix 10 1SD280PT2F551VG 51
5.5 Frame Packer-100G & 16 Channels - AMD Virtex UltraScale+ xcvu7p ... 51
5.6 Frame Packer-400G & 8 Channels - Intel Agilex AGIB027R29A1E2VR0 52
5.7 Frame Packer-400G & 16 Channels - Intel Agilex AGIB027R29A1E2VR0 52
5.8 Frame Packer-400G & 32 Channels - Intel Agilex AGIB027R29A1E2VR0 52
5.9 NDK-APP-Minimal - 100G SmartNIC N6010 .. 53
5.10 NDK-APP-FramePacker - 100G SmartNIC N6010 ... 53
5.11 NDK-APP-Minimal - 400G XpressSX AGI-FH400G ... 54

10

INTRODUCTION

As internet networks become faster, they also become more vulnerable to cyber-attacks such

as Distributed Denial of Service (DDoS) attacks. The attacks are increasingly difficult to detect

due to the high-speed processing requirements of modern networks. To combat these threats,

powerful tools capable of monitoring backbone networks are essential. An example of such

a tool is an FPGA-based network card called XpressSX AGI-FH400G, developed by CESNET

z.s.p.o. This card is powered by the Network Development Kit (NDK), a framework that can be

used to create hardware-accelerated applications for FPGAs. These applications can analyze

and aggregate network traffic for the CPU, enabling processing speeds of up to 400 Gbps.

While the NDK framework is effective, it has certain limitations, especially when

transferring a large number of small network packets to the host memory. These small packets

can lead to increased transmission overhead, reducing the overall throughput of the system

by several tens of percent. To address the said issue, this thesis proposes the design of a digital

circuit that can effectively accumulate (buffer) small packets within several virtual lanes and

send them as a whole new unit, reducing the overall overhead. This circuit will be compatible

with the NDK firmware, allowing seamless integration into the existing system.

This work focuses on the design of a digital circuit that can handle data packets on the NDK

framework’s scalable Multi-Frame Bus (MFB). The MFB is a high-speed point-to-point bus

that can transfer multiple packets simultaneously at 200 MHz. The number of transferred

packets depends on its configuration. For example, a design capable of transmitting data

at 400 Gbps must be able to handle up to four smallest packets simultaneously in one clock

cycle. The design must also be able to adapt to different transfer rates and resource constraints

as the NDK supports various network cards. This creates a number of requirements that

the proposed design must meet, including scalability, parallel processing, and effective data

shifting to maximize the throughput.

The first chapter of this paper introduces the NDK platform, the framework in which

the proposed solution will be implemented. This chapter focuses on the communication buses

commonly used in the NDK platform, as understanding them is essential for designing this

digital circuit. The second chapter describes the data transmission in the NDK system (host

included) to show the cause of the performance loss in the transmission of small packets.

This chapter includes a description of PCIe, its overhead, and the DMA transfers. The third

chapter outlines the design requirements and the concept of the proposed digital circuit called

the Frame Packer. In addition, this chapter also includes a more detailed description of each

subcomponent within the designed architecture. The fourth chapter of this thesis is dedicated

to verifying the functionality and measuring the performance of the designed component.

For verification purposes, the verification plan and test environment are introduced. The last

chapter provides a summary of the verification results, code coverage, and verification

throughput test. In addition, the resources required implementation of this circuit are presented,

as well as the impact on the throughput of the NDK system.

11

1 NDK FRAMEWORK

The Network Development Kit (NDK) is a framework for FPGA cards developed

by CESNET z.s.p.o. It enables users to develop their own applications by providing access

to various interfaces such as Ethernet, PCIe or to external memory. [1]

Most of the NDK firmware and software is open source and available on GitHub. [2]

The VHDL modules used in the NDK firmware are part of the Open FPGA Modules (OFM)

library. [3] As the name suggests, the OFM library is also open source, and the output of this

thesis shall be included in it.

1.1 NDK Architecture

The NDK architecture for a generic FPGA card is shown in the figure below (Figure 1.1).

It is unique in its support for FPGAs from both Intel and AMD/Xilinx, the two major chip

producers. A list of currently supported cards is available on the CESNET GitHub

repository.[4] Additionally, the NDK’s highly scalable design enables a wide range of transfer

speeds, with a current maximum of 400 Gbps. Even higher speeds will be possible in the future

with sufficient FPGA resources and suitable peripherals.[5]

Fig. 1.1 The Simplified Architecture of NDK [5]

12

This digital circuit has two main components for communicating with the outside world.

The first is the Network Module, which uses IP cores (designed by CESNET or by card vendor)

to implement the Ethernet sublayers. This module is responsible for transferring frames

between the Application core (The User logic) and the network, and for converting the IP

interface to the bus protocol used by the NDK platform. [6] The second module – PCIe module

– handles the communication protocol on the PCIe bus and transferring data and instructions

between the PC and the FPGA card. In supported FPGAs, this is implemented on Hard IP blocks

that can be connected directly to the PCIe bus. [7]

FPGA cards often have DDR memories. For this reason, the NDK provides a memory

controller so that users can use standard buses (AXI/AVMM) to control external memory. [8]

The controller itself is directly connected to the DDR memory. Another large block in the NDK

design is the DMA module, which can communicate directly with the PC memory via PCI-

Express when it is used. The open-source version of the DMA in the NDK design is called

DMA Calypte. [9]

The last two modules in the diagram are the Time-Stamp unit (TSU) and the FPGA

controller. The TSU generates accurate timestamps for the Network module and Application,

core which can be used for performance or traffic analysis [10], and FPGA controller can reboot

the FPGA or boot a new one from the QSPI flash memory. [5]

The NDK design has three types of buses – the Memory Interface bus (MI), the Multi-Value

Bus (MVB), and the Multi-Frame Bus (MFB). The MI bus allows the software to access

the internal register of the design. [11] This is done by MTC unit (MI Transaction Controller),

which transfers PCIe transactions and pushes them in form of MI requests to the sort of MI

network. The MVB bus is often used along with the MFB to transfer fixed-length metadata

[12], and the MFB stream bus is a high-speed data bus that is able efficiently transfer large

amounts of data between components (point-to-point transfer). [13] More detailed information

about this type of bus and the others will be described in the following sections as it is essential

to the final outcome of this work. The outcome itself is indicated in the figure above

(Figure 1.1) as the Frame Packer, which should put small packets together to create so called

Super-Packet. This Super-Packet could, in theory, increase the efficiency of the data transfer

by lowering the overhead on the PCIe bus and effectively use Descriptors in DMA transfer.

The topic of the efficiency is discussed in the following chapter.

1.1.1 MI Bus

The Memory Interface (MI) is a master/slave bus used by software to read and write data

for configuring, control state, or statistics reading of components in the NDK platform. For this

purpose, each component has its own address and is connected to a sort of MI network which

is controlled by MI Transaction Controller (MTC). [14] Specification described in this chapter

is based on MI Specification in NDK documentation. [11] The following table defines the MI

bus signals from the perspective of the main component (Table 1.1).

13

Table 1.1 A list of signals that define MI Bus – Slave perspective

Signal Name Signal Direction Signal Width Signal Description

ADDR in ADDR_WIDTH Address

DWR in DATA_WIDTH Data Write

BE in DATA_WIDTH/8 Byte Enable

WR in 1 Write flag

RD in 1 Read flag

ARDY out 1 Address Ready

DRD out DATA_WIDTH Data Read

DRDY out 1 Data Ready

The MI bus supports two types of requests – write and read. A write request is initiated

by setting the WR flag high. To route signal to the correct component, an address signal is used.

Data intended for writing to the slave component is carried by a signal called DWR. This data

is only valid when the WR flag is set. The data, along with BE and ADDR, must remain valid

until the slave component acknowledges the request by setting the ARDY signal high.

The simplified timing diagram of the write operation is shown below (Figure 1.2). During the

first write request, data D0 is written to the component with address A0. There is a delay due

to the late set of the ARDY signal by the main component. The second part shows writing two

data items in two clock cycles – without delay.

Fig. 1.2 Timing diagram of write process on MI Bus

Another type of request is a read request, indicated by the RD flag. Similar to the write

process, this request is accepted by setting ARDY high. However, accepting the request does

not imply confirming the sent data. Data confirmation is indicated by the DRDY flag, which

can be issued simultaneously with the ARDY signal or later. Setting ARDY high indicates that

the slave component is ready to accept another request and setting DRDY signal a valid

response to the read request. The following timing diagram illustrates the read request process.

The first part of the diagram shows read request to address A0. The response is immediate and

confirmed by sending data item D0 and setting the ARDY and DRDY signals high.

In the second read request, there is a request to address A1, to which is responded by setting

ARDY high without sending any data. Master component sends another request to address A2

14

and the main component responds to these requests in the order they were received by setting

DRDY signal high for each DRD item.

Fig. 1.3 Timing diagram of read process on MI Bus

Both, write and read request can be combined in a single communication. The typical

example of this operation is called read-modify-write, which is used to control multi-port

memory. [15] Additionally, byte enable can be used to transmit data that is smaller than the data

bus width. The full specification of MI Bus is available in NDK documentation. [11]

1.1.2 MVB Bus

The Multi-Value Bus (MVB) was created by CESNET to enable parallel processing of data in

the NDK architecture. It can transfer multiple data in a single clock cycle and is often used as

a separate channel to transfer fixed length metadata for the data transmitted on the MFB bus.

The following table shows the signals that the MVB is made of (Table 1.2).

Table 1.2 A list of signals that define MVB Bus

Signal Name Signal Width Signal Description

DATA WORD_WIDTH Transmitted data

VLD ITEMS Item Valid

SRC_RDY 1 Source Ready

DST_RDY 1 Destination Ready

Data on the MVB are called words, which consist of a specified number of items (ITEMS).

The width of each item is defined by the generic parameter ITEM_WIDTH when bus is created.

The data width is calculated by multiplying these two parameters. The valid signal (VLD)

indicates which items in the data word can be processed. Since not all items must have valid

data, gaps between items may occur. The following figure (Figure 1.4) shows the structure

of the described bus.

15

Fig. 1.4 Structure of the MVB Bus

The MVB introduces the Source Ready (SRC_RDY) and Destination Ready (DST_RDY)

signals, which implement a request-acknowledgment mechanism. Transmitter validates its data

and creates write request by setting SRC_RDY high. This request is confirmed by the receiver

when the DST_RDY is set high as well. Both signals must be high for a transfer to complete.

The port direction of each signal depends on whether the component is receiving or transmitting

data on the MVB. For a receiving component, SRC_RDY is an input and DST_RDY is

an output. For a transmitting component, the port direction is reversed.

Fig. 1.5 Port direction in SRC/DST_RDY logic

Data transfer begins when SRC_RDY is set high. To indicate readiness to receive data,

the receiver sets DST_RDY to high. The VLD signal, which has a width equal to the number

of items in the data word, indicates which data items are meant to be processed. Each bit

in the VLD signal validates the corresponding data item. The possible communication

on the MVB bus is shown below (Figure 1.6). Each X in sent data corresponds to the VLD

signal and indicates that the data in the item is not valid. The detailed specification of the MVB

is available in the NDK Documentation. [12]

Fig. 1.6 Timing diagram of communication on MVB Bus

16

1.1.3 MFB Bus

The Multi-Frame Bus (MFB) shares the same principle of Multi-Buses as the MVB. Its purpose

is to increase efficiency by utilizing unused space in data bus. For instance, the AXI-Stream

protocol by ARM [17] requires data to start at the beginning of the data word, which can lower

bus utilization when frames are not the same size as the word. The same applies to the Avalon-

Streaming protocol by Intel. [18] For example, a 512b wide data bus can transfer the shortest

possible Ethernet frame in one clock cycle, resulting in high efficiency when transferring 64B

frames. However, Ethernet frames can reach up to 1518B [19], leading to frame sizes that don’t

align perfectly with the word. A 96B frame would leave half of the word empty since the new

frame must start at the beginning. The Multi-Bus principle, on the other hand, allows frames

to start at a different location within the data word, which is allowing multiple frames (or just

parts of frames) to share the same word. [16] This chapter describes how is this method

implemented and what rules must be followed to increase efficiency of the data transfer and its

processing across the FPGA. Table 1.3 lists all the signals that define the MFB bus.

Table 1.3 A list of signals that define MFB Bus

Signal Name Signal Width Signal Description

DATA WORD_WIDTH Transmitted data

SOF REGIONS Start of Frame – Region mask

EOF REGIONS End of Frame – Region mask

SOF_POS SOF_POS_WIDTH
Position of the beginning(s) of

a frame(s)

EOF_POS EOF_POS_WIDTH
Position of the ending(s) of a

frame(s)

SRC_RDY 1 Source Ready

DST_RDY 1 Destination Ready

Data are transmitted in the MFB words, represented by the signal DATA. The width of this

signal is determined by the bus configuration parameters REGIONS, REGION_SIZE,

BLOCK_SIZE, and ITEM_WIDTH. The structure of the bus is as follows: The parameter

REGIONS defines the number of regions in the word. Each region is divided into blocks, and

the number of blocks per region is defined by the parameter REGION_SIZE. These blocks, in

turn, are made up of items, and the number of items per block is specified by the parameter

BLOCK_SIZE. Finally, the parameter ITEM_WIDTH defines the size of the smallest

recognizable unit on MFB, which is the item. The size of the MFB word can be calculated

by multiplying these parameters together.

The REGIONS parameter defines the number of sections into which the word is divided.

The rule is that the region must contain up to one start of frame (SOF) and one end of frame

(EOF), so it can fit the whole frame or the end of one frame and the beginning of another frame.

17

The maximum number of frames (or parts of frames) that can be transmitted in a single clock

cycle is equal to the number REGIONS + 1 in a word. The second parameter, REGION_SIZE,

determines the number of blocks in each region. Data transmission must follow the rule that

the beginning of the frame must be aligned with the block. The third parameter, BLOCK_SIZE,

sets the number of items that are in each block. An item is the smallest unit that can be

recognized on the MFB bus, and its size is defined by the parameter ITEM_WIDTH. Items are

locations where the end of frames must be aligned.

The configuration of the MFB is labelled as MFB#(REGIONS, REGION_SIZE,

BLOCK_SIZE, ITEM_WIDTH). Although these parameters can be set randomly, there are

only a few configurations that are supported in NDK. For example, the 100G Ethernet protocol

is most effective (resources vs. frequency) when the bus configuration is MFB#(1,8,8,8). NDK

design for 400 Gbps must be able to handle configuration MFB#(4,8,8,8), which can transfer

4 smallest Ethernet frames at the same time. The communication with PCIe is configured

as MFB#(2,1,8,32) due to DWORD alignment on the PCIe bus. The following figure illustrates

described configuration (Figure 1.7).

Fig. 1.7 Configuration of MFB Bus

As mentioned before, the MFB is able to transfer multiple frames in a single clock cycle or

share unused space with other frames. To do this, it needs to know the position of each frame

within the data word. This is where the SOF, EOF, SOF_POS, and EOF_POS signals come in.

The SOF signal indicates the region where the start of the frame is located. The EOF signal

works in the same way. The sizes of these signals are based on the REGIONS parameter,

and its data serves as a mask for the start or end of the frame. The following diagram illustrates

the SOF and EOF mechanism. A SOF with a value of "1111" indicates that the beginning

of the packet is in every region and an EOF of "1101" indicates that the packet ends are in every

region except the second. From this variation, it is possible to roughly determine where each

packet is located. That is, there is an entire packet in the first region, there is a packet that starts

in the second region and ends in the third region, there is a packet that starts in the third region

and ends in the fourth region, and finally there is a fourth packet that starts in the fourth region

and ends in one of the following words.

18

Fig. 1.8 MFB configuration – SOF & EOF example

The figure above (Figure 1.8) has one remaining issue – the exact location of frames cannot

be pinpointed within the MFB word. The SOF and EOF masks only provide information about

whether a frame starts or ends within a region. To determine the precise location, two additional

signals are needed, SOF_POS and EOF_POS. The width of SOF_POS is determined

by the number of blocks and its value indicates the location of the frame’s start within

the region, which is aligned to the blocks. The width of EOF_POS must have a higher

resolution, as the end of frames can be aligned to the items. Its width is determined

by the number of blocks and number of items within the MFB word. [13]

Fig. 1.9 MFB configuration – SOF_POS & EOF_POS example

19

The last two signals in the table (Table 1.3) are SRC_RDY and DST_RDY. These signals

were described in the MVB bus, and they function in the same way. The following timing

diagram (Figure 1.10) shows how data is transferred on the MFB bus from the transmitter to

the receiver – SRC_RDY is the input of the component and DST_RDY output. The transmitted

frames, labeled from A to F, comply with the figure presented below (Figure 1.11). The MFB

configuration used in this example is MFB#(4,4,2,8).

Fig. 1.10 Timing diagram of data transmission on MFB Bus

Fig. 1.11 Transmission of frames on MFB Bus

20

2 DATA TRANSMISSION

The main goal of this work is to efficiently move data between an FPGA and software running

on a host PC. To achieve this, the NDK can directly transfer packets from Ethernet (or processed

data) to the computer’s memory using a DMA controller and suitable software. The interface

that allows FPGA to access host memory is called PCIe. The DMA transfer process and its

effectiveness on PCIe will be discussed in detail in this chapter.

2.1 PCI-express

PCIe (Peripheral Component Interconnect Express) is a high-speed serial interconnection that

is primarily used to connect components such as the CPU, DDR memory, graphic card,

or acceleration cards with FPGAs. It is the successor of the PCI (Peripheral Component

Interconnect) standard, which was first introduced by Intel in 1992. The original PCI was a 32-

bit bus that could transfer data at a maximum speed of 1056 Mbps. [22] In contrast,

the current PCIe 4.0 standard can transfer data at speeds up to 32 GBps, and the newer PCIe

5.0 even up to 64 GBps in x16 lane configuration. [23] This chapter will describe its architecture

and transmission efficiency of the actual data.

2.1.1 PCIe Architecture

PCIe uses a bus-based architecture, meaning that the peripherals are connected to a central unit.

In this case the Root Complex. These peripherals (or endpoints), communicate with the Root

Complex using lanes, where lane is a pair of serial links. For example, PCIe 4.0 x16 has 16

lanes, where one wire in each pair is for transmitting data, and the other is for receiving.

The Root Complex itself manages communication for all connected endpoints and sets up direct

memory access (DMA) for them. [21] The topology of the PCIe is shown in the Figure 2.1.

Fig. 2.1 PCIe Bus topology [21]

21

The PCIe is implemented in the first three layers of the ISO/OSI model. The Physical Layer

(PL), the Data Link Layer (DLL), and the Transaction Layer (TL). When data is sent from one

device to another, it must pass through each of these layers. In Transaction Layer, the data are

divided into units called Transaction Layer Packets (TLPs). Every TLP has its own Address

header, which defines the destination device, Payload space, which is used to carry data,

and an optional Cyclic Redundancy Check (CRC), to detect errors in the data transmission.

The CRC is handled by the device logic and is typically labelled as ECRC. The control

of the checksum is done by the device logic at the receiver. The header can be from 12 to 16

bytes long, and the CRC 4 bytes long. [24]

Fig. 2.2 PCIe layers between two devices [24]

The Data Link Layer ensures reliable transmission of the TLP by detecting errors, managing

the link connection, and controlling the order of data transmission. To detect errors, the DLL

adds a CRC to the TLP packet labelled as LCRC. This CRC is 1 byte long. The DLL also

ensures that data is sent in the correct order by adding a Sequence Number to each TLP packet

creating Data Link Layer Packet (DLLP). Sequence Number is 2 bytes long and tells

the receiver which TLP it should expect to receive next. To ensure that TLP packets are

received correctly, the DLL uses a Replay Buffer, which stores sent packets until a confirmation

message is received. The confirmation message is sent in a separate DLLPs, which are typically

6 bytes long and includes an ACK or NACK flag to indicate whether the corresponding TLP

was received successfully or not. When the transmitter receives an ACK, it deletes

the corresponding TLP from the Replay Buffer. On the other hand, when NACK is received, it

resends the TLP. The transmitter will continue to resend TLPs until it receives an ACK, or the

Replay Buffer fills up. In the second case the communication will break. [20][24][25][26]

Described principle of DLL is shown in Figure 2.3.

22

Fig. 2.3 Communication on Data Link Layer

The last part of the PCIe ISO/OSI model is the Physical Layer. Its purpose is to transform

data from the DLL to the bitstream which can be sent over the wires. Once the DLL pushes its

data to PL it must pass through several steps. Firstly, the data is Scrambled, which means it is

evenly distributed across the available lanes. Then, the data is encoded to ensure DC balance

on the bus and enable clock recovery at the receiver. The typical encoding is 128b/130b,

meaning that 128 bits of data are encoded into a 130-bit signal. The older PCIe generation used

8b/10b encoding, which caused high loss in throughput. The encoded data is then processed

by the SERDES (Serializer-Deserializer) converter, which transforms the bytes on each lane

into a bitstream. To differentiate between DLP packets, START and END symbols are added

to the original packet. Each of these symbols is typically on byte long. [27] The final packet

that is send over the physical wires is shown in the figure below (Figure 2.4).

Fig. 2.4 Packet sent over the PCIe [24]

2.1.2 Efficiency of Data Transfer Over PCIe

There are two main factors that can affect the efficiency of data transfer over the PCIe bus.

Data transfer overhead and system configuration. Data transfer overhead is mainly caused

by encoding, bus traffic and TLP packet overhead. In system configuration is the most crucial

parameter Maximum Payload Size (MPS). This parameter determines the maximum amount

of data that can be transferred within a single TLP. Since each component on the bus has its

own MPS parameter, the lowest value is considered globally in the PCIe system. This chapter

will be based on the source of AMD/Xilinx [20].

23

The first discussed factor in the transfer overhead is Symbol Encoding. It is a method

of converting data signals in PL into more bits to improve reliability and ensure DC balance

on the bus. While this is essential for proper data transmission, it also reduces the throughput

of the transfer since specification gives the maximum speed for encoded signals. The common

encoding used in newer generations of PCIe is 128b/130b, which means that for every 16 bytes

of data, there are additional 2 bits that are considered a part of the transmission. This results

in an average throughput loss of approximately 2%. In contrast, older generations of PCIe used

8b/10b encoding, which caused throughput loss of 20%. [20]

The second factor in the transfer overhead that is affecting overall performance of the bus

is the Traffic Overhead. This type of overhead is caused by packets whose task is to manage

the link and ensure reliable data transfer. One example of traffic overhead is the Credit-based

Flow Control system, which ensures that the data is not discarded due to a small buffer

in the receiver. The initial credit number is obtained from the initialization process.

When the transmitter sends data to the receiver, it consumes one credit per sent packet.

Once the credit number reaches zero, the transmitter waits until the credit number is updated.

This is usually done once the buffer on the receiver site is empty. [26]

As a part of a transfer overhead may be considered an ACK/NACK mechanism described

in the previous section. This confirmation, even though needed for transfer reliability,

is consuming bandwidth of the link. The overhead cause by this mechanism can be reduced

by collapsing messages into one, meaning the message with the sequence number 3 deletes TLP

packets with indexes from 0 to 3. But by doing this a throttle may occur in the form of a full

Replay Buffer. [20]

Fig. 2.5 Transfer inefficiency caused by Packet overhead – worst case

Another factor that can reduce efficiency of the system throughput are the packets in which

the data is transmitted. Such a packet is shown in Figure 2.4. In addition to the actual data,

there is also overhead added by PCIe layers. In the worst case this overhead can be up to 28 B.

24

This inefficiency is significant when transferring large amounts of small data to different

addresses. The figure above (Figure 2.5) shows how the Payload can change the efficiency

of the transfer. The MPS is considered as the maximum possible value – 4096 B, meaning each

data packet is sent in a its own TLP. The following equation describes the efficiency

dependence on payload of each TLP packet.

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒

𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒 + 𝑇𝐿𝑃 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
∙ 100 [%] (2.1)

The last factor affecting PCIe performance is the system parameter Maximum Payload Size

(MPS). In the last example this parameter was set to its maximum value – 4096B.

However, this value is not widely used for several reasons. The first reason is that every

component in the data path must have the same ability to handle such payload. This may be

possible, but it is problematic in terms of component prices. The second reason is efficiency.

It is possible to achieve sufficient efficiency by setting the MPS to lower values. For example,

transferring a 512B data packet with the MPS set to 128B would require 4 TLPs. This means

that the overhead in the worst case would be 112B. The efficiency of this transfer would

be 82%. Setting the MPS parameter to 256B would increase the efficiency to 90% and by

setting MPS to 512B, the efficiency would be 94 %. The point is that increasing the MPS

parameter gives better efficiency, but the increase is disproportionate to the effort – the price of

better hardware and complexity of the software. This is why most systems have MPS set to

128B or 256B. [20] The following equation describes transfer efficiency on MPS parameter.

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑀𝑃𝑆) =
𝑀𝑃𝑆

𝑀𝑃𝑆 + 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
∙ 100 [%] (2.2)

To summarize this chapter. Transferring data between two endpoints requires a certain

amount of overhead. While some factors are out of the user’s control – such as symbol encoding

or packet overhead – understanding them can help optimize the system for maximum efficiency.

The main factor that can be influenced is to fully utilize the TLP packet at the PCIe level, so the

overhead is minimal.

2.2 DMA

Direct Memory Access (DMA) is a way for devices to communicate directly

with the computer’s memory (Random Access Memory – RAM) without using the Central

Processing Unit (CPU). By doing this, it is possible to efficiently transfer large amounts of data

without consuming the CPU’s time, so it can focus on other tasks such as data processing. [28]

DMA is usually made possible by a bus that connects the CPU, RAM, and external device.

The most common type of bus used for DMA is PCIe.

25

At the heart of DMA transfers is a device called the DMA Controller. [28] This device

temporarily takes control of the PCIe bus instead of the CPU to transfer large amounts of data.

By transferring data this way, the transfer can be more efficient because the DMA Controller

can be optimized for the task. However, the controller cannot work on its own, as it would cause

conflicts in the host memory. For this reason, the function of the controller is handled by using

Descriptors created by the driver running on the CPU. [29] The descriptor is an instruction

for the DMA Controller. Each of these instructions gives access to the part of the memory where

the controller can read or write data. The way the DMA is built or descriptors are passed can

vary, so the following section will only focus on DMA transfer in the NDK Framework.

DMA Controllers can be designed in two ways: Streaming DMA and Packet DMA.

Streaming DMA is optimized for transferring continuous streams of data, such as audio or

video, because it can send multiple packets together. This allows the DMA Controller

to increase the throughput of the system by reducing the overhead on the PCIe. [30] However,

it can make it difficult for software to process other data because the received data is stored

in a continuous memory space. Packet DMA, on the other hand, distinguishes between packets

and sends them separately to the memory space allocated by the descriptor, making it easier

for different CPU cores or applications to access the data. This approach, however, has a higher

transfer overhead than streaming. [31]

2.2.1 DMA Transfers in NDK

The NDK uses a vendor independent DMA Controller to communicate with the host memory.

The first DMA Controller developed is called DMA Medusa, [31][9] which can transfer data

at up to 400 Gbps and supports up to 512 DMA channels. The second controller, currently

available in configuration MFB#(1,4,8,8), is called DMA Calypte and is designed to achieve

the lowest possible transfer latency. Both controllers are implemented entirely

on the FPGA [32] and are connected directly to the PCIe Hard IP, which in turn is connected

to the PCIe bus. For the 400 Gbps transfer rate, the card with the FPGA is connected to the host

PC via two PCIe 4.0 x16 slots or single PCIe 5.0 x16 slot.

The operation of this DMA Controller is packet-based, which means it uses its given

memory space for a single packet. This makes it easier to build software on top of it but may

result in higher transfer overhead, which becomes amplified when transferring large amounts

of small packets. There are two types of overhead, on the PCIe bus in the form of TLPs whose

payload is not fully utilized (see prev. section), as well as overhead caused by the management

of the transfer. The management overhead is caused by the increased use of descriptors that

need to be periodically updated so that the DMA Controller can send a continuous stream of

data. This update process consumes some of the PCIe bandwidth. The following example

describes the process of transferring data from the peripheral device to the host RAM by using

the RX module of the DMA Controller. A schematic representation of this example is shown

in the figure below (Figure 2.6). It should be noted that the RX module is used to receive data

from the Application core in the FPGA and to forward it to the host memory via PCIe. [33]

26

Fig. 2.6 The DMA architecture over the PCIe bus [35]

Before data can be sent, the DMA controller must be set up. This is done by the DMA driver

running on the host CPU by creating a set of descriptors and sending them to its memory.

The descriptors are stored in a specific address space known to the DMA Controller and are

automatically updated as they are used. The final part of the setup is for the DMA Controller

to load the descriptors from the host memory. When the setup is complete and the controller

has data to send to the host memory, it takes control of the bus and starts transferring packets.

As an example, these packets are the Ethernet frames sent when using the ndk-app-minimal

reference model. Each frame is first converted to the TLP and then sent over the bus to the host

memory. If the frame is larger than the payload size (MPS) of the TLP, the frame is divided

into smaller chunks. Once the frame is written into the host memory, the descriptor is marked

as used and another is used for the next frame. Periodically, the status of the used descriptors is

sent back to the host memory where the DMA driver is running on the CPU and the descriptors

are replaced by new ones. The transfer overhead, based on this example, is higher when

the small frames are sent over the bus because the descriptors need to be updated more often

than in the case of larger frames. [33] [34] [35]

To improve the speed of data processing on the CPU or enable multiple applications to use

FPGA card, the DMA implemented in the NDK architecture supports channels. This approach

divides the traffic from the FPGA into multiple virtual lanes, called DMA Channels.

From a software perspective, each channel behaves as an independent network interface, each

of which can be accessed individually. Each channel operates independently within the DMA

module, with each channel controlled by an independent driver running on the CPU. This

control is provided by the MI bus and its task is to filter the data transfer to the host memory

by setting the control register to either start or stop. When a channel is stopped, the DMA

Controller drops all incoming frames associated with that channel. [31][32]

27

3 DESIGN OF THE ARCHITECTURE

The aim of this thesis is to design a digital circuit that can increase the transmission efficiency

of small packets, thus improving the overall throughput of the system for this type of data.

A previous chapter discussed the concept of transmission efficiency and proposed a solution

to increase it by combining small packets into larger units. In the NDK platform, these larger

units are called Super-Packets. By implementing this component, the DMA used in the NDK

design can mimic the behavior of Streaming DMA while keeping the benefits of the packet-

based DMA approach. This chapter describes the specific requirements for the digital circuit

and proposes a solution for the component that could theoretically increase the transfer rate for

small packets without causing a drop in performance when sending larger packets.

3.1 Design Requirements

This section provides a more detailed description of the task so that the component can be

properly designed. As mentioned earlier, the design should merge several small packets

received from the MFB interface and create a single larger super-packet. The packets within

the Super-Packet should be aligned to MFB blocks, i.e. there should be minimal empty space.

The size of the Super-Packet is determined by the available memory space specified by

the descriptor. However, the Super-Packet doesn’t have to completely fill the allocated space,

so its length ranges from the minimum size of an Ethernet frame to the maximum available

memory. This length can be set by a generic parameter but should not exceed 2048 B in total.

The component must also manage the DMA Channels, as DMA module would interpret

the SP as a single packet with a single channel number so only packets with the same channel

number can be accumulated into one SP. However, the MFB bus itself is a challenge. The MFB

bus allows multiple packets to be transmitted within a single clock cycle, and these packets

do not necessarily belong to the same channel. As mentioned earlier, the MFB configuration

MFB#(4,8,8,8) allows data from up to five different packet to be transmitted. To overcome this

problem, the incoming traffic must be sorted by the channel number associated with each packet

in the MFB word. To ensure consistency, the output interface of the component must be

the same as the input interface. By dividing incoming traffic into several separate channels,

multiple output interfaces are created. As the component must be compatible with the existing

system, a merging mechanism is essential as the DMA input interface is designed for the single

MFB bus. In other words, the input and output interface is common for all DMA Channels and

the merging mechanism is needed as processing multiple DMA Channels requires divide

the traffic into equal number of processing units.

The alignment principle described so far is shown in the following figure (Figure 3.1).

In this example, the MFB input with the configuration MFB#(2,4,2,8) contains packets

from two channels. The proposed component should be able to sort the data according to

the channel to which it belongs. The packets are then stored in output FIFOs, where they are

28

aligned to the blocks so the gap between packets is minimal. The width of each FIFO

corresponds to the width of the MFB, and its depth depends on the size of the Super-Packet.

Fig. 3.1 The basic principle of the Frame Packer

To maximize efficiency, it is necessary to store parts of super-packet until they reach

the required size. However, there are some potential challenges. Firstly, during periods of traffic

when a channel is not fully utilized, it may take longer to assemble the Super-Packet

of minimum length. To overcome this, a timeout mechanism must be implemented to prevent

the packet from taking too long to reach its destination. It should be noted that even if timeout

doesn’t occur, the assembly itself will increase the latency of the system, which is insignificant

in certain use cases, such as network monitoring. Secondly, packets within the Super-Packets

must be coherent. This means that if the stored Super-Packet is partially filled with small

packets, and an incoming packet exceeds its maximum size, the stored data must be sent before

the new packets can be processed. Given the constraint that packets must be sent in the order

they were received, sending larger packet before the stored data is not an option.

As mentioned earlier, the NDK design is scalable, and the proposed solution must be as

well. To achieve a throughput of 100 Gbps, the NDK design is capable of handling

the MFB#(1,8,8,8) configuration. However, the target throughput is meant to be 400 Gbps.

This is typically achieved by using the MFB#(4,8,8,8) configuration at frequency of 200 MHz.

29

Such speed creates a constraint where the longest combinational path must not exceed a delay

of 5 ns. It’s worth noting that the NDK supports high-end FPGAs from both major chip

manufactures, AMD/Xilinx and Intel, which means there are plenty of resources available

for the given task. On the other hand, it also requires a generic design that cannot use vendor

specific hard blocks, which can perform some tasks efficiently.

3.2 Top Level Concept

This section describes the top-level architecture of the proposed design based

on the requirements outlined in the previous section. It consists of several parts and

the interfaces to communicate with the existing system. The input interface of the proposed

component consists of MFB and MVB bus with the configuration necessary for the required

speed. The same configuration is used for the output interface since the compatibility with the

existing NDK architecture must be preserved. The following Figure 3.2 illustrates the internal

structure of the Frame Packer.

Fig. 3.2 Top Level view of the Frame Packer – 4 Regions, 4 Channels

As the MFB and MVB interfaces are not synchronized at the input of the component, a unit

called the Metadata Insertor is used to synchronize them. Once the Metadata Insertor has both

the data from MFB and the metadata from MVB, the stream is passed to the next stage where

the auxiliary signals are generated. These signals help to process the data in each Channel unit

and to correctly calculate the select signal for each Barrel Shifter. In the next stage, the data and

auxiliary signals are processed by the Barrel Shifters. Their job is to shift data to reduce empty

space between packets to the minimum. Shifting the data at the input of the component saves

the resources compared to the case where there are Barrel Shifters in each Channel unit. Note

that the number of channel units is set by the generic parameter. The number of Barrel Shifters

in this case depends on the REGIONS parameter of the MFB bus. Since the MFB can carry up

to REGIONS + 1 packets simultaneously, there must be the same number of Barrel Shifters so

30

that each can handle its own part of the packet independently. Once the data has been shifted,

it is sent to the channel to which it belongs. This distribution is based on the metadata

from the MVB bus and is performed using Demux component available in the OFM repository.

Each Channel has its own Pointer which is updated by the data from the Barrel Shifter

Controller. This pointer is used to track the assembly status of each word within the channel

and is another parameter that must be considered when calculating the shift select signal

for the Barrel Shifters. Inside the Channel unit itself, the Super-Packet is assembled by

appending parts of shifted packets. Once the Super-Packet is complete, the SRC_RDY signal

is generated and the output component, called the Merger, considers the completed channel,

and gives it enough space to send the Super-Packet to the output MFB interface. Finally,

the MVB FIFO is used to store Super-Packet metadata and passes it to the MVB interface when

requested. This metadata is generated in the Channel from which the Super-Packet originates.

3.3 Components

The previous section introduced the basic structure of the Frame Packer and its concept.

This section gives a more detailed description of each part. Although the principle

of concatenating packets into Super-Packets (per each channel) is quite simple, a closer look

at the structure might convince you otherwise. The implementation of such a digital circuit is

not so simple, especially in the case where multiple packets are transferred at the same time.

3.3.1 Metadata Insertor

This component is part of the OFM library [36]. Its purpose is to insert metadata from the MVB

bus into the auxiliary META signal of the MFB bus and to align the metadata with the SOF

(or EOF) of the frame. In this case, the MVB bus transmits the Length and Channel ID of each

packet. The reason for including this component is that the MVB and MFB buses are

independent buses. Therefore, they are not synchronized, which means that MVB data can

arrive at different times but in the same order as packets on the MFB bus. The principle of the

Metadata Insertor is shown in the following figure (Figure 3.3).

Fig. 3.3 Principle of Metadata Insertor

31

3.3.2 Auxiliary Generator

Once the MFB data and MVB metadata are synchronized, the stream is passed to the stage

where auxiliary signals are generated. These signals help calculate the shift select signal

for each Barrel Shifter and recreate additional MFB signals, such as SOF or EOF, as these

signals will not be valid after the data shifts.

The first signal generated is Block Valid, which is a vector that validates each block

of the packet in the MFB word. This vector is generated separately for each packet, resulting

in an array of vectors. The length of this array is based on the REGIONS parameter of the MFB

bus (i.e., the maximum number of packets in a word). This array of vectors is then used

for the calculation of the shift select signal and to recognize valid blocks in each channel unit.

The following figure illustrates the described principle of validating blocks (Figure 3.4).

Fig. 3.4 Block Valid array

The next two auxiliary signals help to detect each packet’s boundary – SOF_ONE_HOT

(or SOF_OH) and EOF_ONE_HOT (or EOF_OH). These signals are in a similar format

to the Block Valid array, and their purpose is to validate the block where the packets begin and

end, respectively. Their purpose is to recreate the additional MFB signals after the MFB data

has shifted. These signals, along with the Block Valid, are generated using the Auxiliary Signals

component [37], which is part of the OFM library. For the purposes of the Frame Packer, this

component was adjusted to generate additional SOF_OH and EOF_OH signal. The last

auxiliary signal, extracted from the MFB bus, is the SOF_POS. Technically, this signal is not

processed, it is just passed in the form of an array into the component responsible

for the calculation of the shift select signal. As it is an offset of each packet within the MFB

word, it is included in the calculation of the shift select signal.

32

The last two auxiliary signals are generated from the metadata – The Packet Length and

Channel ID. It is necessary to take into consideration gaps between the regular packets within

the Super-Packet in order to correctly calculate its final length. These gaps are caused by

packets being aligned to the blocks and it ranges from 1 to 7 items when the parameter

MFB_BLOCK_SIZE is set to 8. The easiest way to deal with this is to round up the incoming

lengths that are in the number of items to the next nearest block as the maximum size of the

empty space between the packets will not exceed the size of the block.

The last data to adjust is the Channel ID. Each Barrel Shifter must receive a valid

Channel ID in order to calculate the shift select signal and then distribute the shifted data

to the correct channel. For this purpose, a component called LAST_VALID is used. The

internal structure is shown in Figure 3.5. Its purpose is to pass MVB data if they are valid and

to store the last valid data if there is none on the input. This is necessary for the first Barrel

Shifter, which is processing only packets originating in one of the previous words.

Fig. 3.5 LAST_VALID structure and expected output

In order to process data from multiple channels, it is necessary to handle each packet

independently. To differentiate between packets, the MFB_DROPPER component was used

to filter each one of them into a separate path. Its job is to mask the packets that started

in the region marked as drop. To do this, it uses a packet tracking mechanism called

packet_continues, which is a simple way of determining whether the packet ends in the MFB

region (or MFB word) or continues into the next one. For the purposes of the Frame Packer,

the inner signal that indicates packet continuation has been added to the output interface.

33

The following figure (Figure 3.6) shows the internal structure of the Auxiliary Generator with

the described principle. The first DROPPER is set to drop all packets (except those

from the previous word). The others are set so that the second DROPPER only passes packets

from the with SOF in the first region, the third DROPPER only passes packets with SOF in

the second region, and so on. This makes it possible to distinguish between packets and to

process up the five packets in a clock cycle without pausing.

Fig. 3.6 Internal structure of the Auxiliary generator

3.3.3 Barrel Shifters

As mentioned above, the purpose of the Barrel Shifters is to minimize haps between packets.

The number of Barrel Shifters depends on the REGIONS parameter of the MFB bus, or rather,

on the number of packets that can be transferred over the bus in a single data word. That is

because each of these packets can be routed to a different channel, thus requiring a different

shift in order to match stored data further in the Channel unit. The previously generated

auxiliary signals are also shifted along with the data. These include the Block Valid signal of

each packet, SOF and EOF in one-hot format, and Packet Length. The packet length is valid

with the SOF, so the block with the length should be placed in the same place as the SOF.

34

However, for simplicity the Length is copied into each block over the whole region where

the SOF is, and it is extracted only from the block with the SOF.

Fig. 3.7 Principle of the Barrel Shifter

3.3.4 Pointer Controller

The Pointer is a parameter that is included in the calculation of the shift select signal. Its purpose

is to track the status of an assembly register in the given channel. Its value points to the block

that will be used as a reference for aligning new data. The assembly register itself is used to

hold valid blocks until the entire word register is filled with blocks. The width of the pointer

register is calculated from the width of the MFB word or, rather, by the number of blocks and

is extended by one bit. The extra bit is used to indicate the overflow, which means that

the assembly register is full of valid blocks and is ready to be processed. The number of Pointer

units is equal to the number of generated channels. The following figure shows the internal

structure of each Pointer Control unit (Figure 3.8).

Fig. 3.8 Structure of the Pointer Controller – 4 regions

35

3.3.5 Barrel Shifters Controller

The principle of removing the empty spaces between packets is based on rearranging packet

blocks and matching them after each other. This requires a register inside each channel that

stores the incomplete words. In the scope of this thesis, it will be referred to as the Assembly

register. The task of the Barrel Shifter Controller is to calculate the shift value for each Barrel

Shifter (packet), so they do not overwrite any stored blocks, nor leave any empty blocks.

The way the shift select signal is calculated is further described in this section.

Let’s assume there is only one region and one channel to work with. The first packet that is

processed after reset must be aligned to the beginning of the MFB word. This means that

the shift of the first word with the valid blocks depends only on the SOF_POS of the incoming

packet as it is a position of the first packet block within the word. Note that this packet is

processed by the Barrel Shifter with index = 1.

 𝑇𝑋_𝑆𝐸𝐿[1] = 𝑆𝑂𝐹_𝑃𝑂𝑆[1] [blocks] (3.1)

The pointer indicating the status of the assembly register is incremented by the number

of valid blocks in the first word. Now the incomplete word is waiting in the assembly register

to be completed, and the pointer is pointing to the free block to which the next valid blocks

destined for this channel would be stored. Note that this part of the packet is going to be

processed by the Barrel Shifter with index = 0 (assuming packet from the first word continues

to another). Since the packet can’t start in the first Barrel Shifter and continues for the beginning

of the next word, the SOF_POS[0] is always zero. Based on this, the new shift select value is

calculated as follows:

 𝑇𝑋_𝑆𝐸𝐿[0] = 𝑆𝑂𝐹_𝑃𝑂𝑆[0] − 𝑃𝑇𝑅 [blocks] (3.2)

Note that the result of this equation will end up in negative numbers, but since the signal is

unsigned, the result will underflow and end up in the range 0 – 7 (for configuration

MFB#(1,8,8,8)). This underflow value is still valid and suitable as the shift select value.

The last case occurs when there are two packets in the word (one ends and the second begins).

Both are destined for the same channel. When calculating the second packet shift, the number

of valid blocks of the first packet in the word must be taken into consideration. Otherwise,

the blocks would overwrite each other resulting in loss of the data. This results in the following

calculation:

𝑇𝑋_𝑆𝐸𝐿[1] = 𝑆𝑂𝐹_𝑃𝑂𝑆[1] − (𝑃𝑇𝑅 + 𝑠𝑢𝑚(𝐵𝑙𝑜𝑐𝑘_𝑉𝑎𝑙𝑖𝑑[0])) (3.3)

The new alignment is defined by the Pointer and the number of valid blocks of the packet

ending in the same word. The timing diagram of this process is shown in Figure 3.9. The signal

values are in the binary format. The input is labeled RX_* and the output is labeled TX_*.

The first clock is the beginning of the green packet, which starts in the fifth block of the MFB

word. The shift select signal with the same value as SOF_POS[1] is generated in TX_SEL[1].

The next word is full of valid blocks belonging to the green packet from the previous clock

cycle. The shift select signal is based on the value of the pointer and is processed by the first

36

barrel shifter. In the following cycle, there are two parts of packets - green and blue. The green

one ends there, while the blue one begins. For each part of the packet a separate shift select

signal is generated. Note that the second select signal must take into account the number of the

last valid blocks of the green packet. The last part of the blue packet arrives later and contains

only the last part of the blue packet. This part is handled by the first barrel shifter, and its select

signal is based on the value of the pointer.

Fig. 3.9 Timing diagram of generating shift select signal

 The shift select calculation described above can be represented as a digital circuit which is

shown in Figure 3.10. Each BS_CALC block uses an equation derived from the previous

example. The first BS_CALC[0] only considers the Pointer parameter in the calculation. Other

parameters, although connected, are set to zero. This has been added to make this VHDL

component generic, so it can be used multiple times if the generic number of regions is changed

between 1 and 4.

Fig. 3.10 BS_CTRL – One region and one Channel

To support multiple regions, two major changes were made. In the initial version,

the BS_CALC with index = 1 must have taken into account the sum of the valid blocks

of the previous packet. In the extended version, each BS_CALC component must do the same,

37

but with each packet that may occur in the data stream. For this reason, the number of valid

blocks of packets that have been processed by BS_CALC components with lower index must

be summed. The second major change is within the BS_CALC itself. Since the SOF_POS is

only valid for the given region, it has to be corrected for BS_CALC components handling

packets from the second region onwards. This is done by adding an offset equal to the number

of blocks in the previous regions. Therefore, the final calculation is as follows:

𝑇𝑋_𝑆𝐸𝐿[𝑛] = (𝑛 − 1) ∙ 𝑀𝐹𝐵_𝑅𝐸𝐺𝐼𝑂𝑁_𝑆𝐼𝑍𝐸 + 𝑆𝑂𝐹_𝑃𝑂𝑆[𝑛]

 −(𝑃𝑇𝑅 + 𝑠𝑢𝑚(𝐵𝑙𝑜𝑐𝑘_𝑉𝑎𝑙𝑖𝑑[𝑝𝑟𝑒𝑣]))
(3.4)

Fig. 3.11 BS_CTRL – Four regions and one Channel

The last step is extending the component to support multiple channels. This is done by

adding a new input that indicates which channel each Barrel Shifter is processing. This input is

called RX_CHANNELS and it is an array with a Channel ID value for each BS_CALC.

This number is then used as a select signal to map the Pointer of the assembly register

from the given channel to the calculation. Similar operation is done with each sum of valid

blocks. In this case a demux is used. This component forwards the input to one of the outputs

(channels) and others will be set to zero. This is necessary in cases when there are multiple

packets each heading to different channel. Without demux, all these signals would be

considered into calculation even though the packet is not there. This would have resulted

in assembled word whose parts are invalid. At the input of the BS_CALC all these demux

output are merged again with select signal from RX_CHANNELS. By doing this it is possible

to catch cases when there is packet in the first and fourth region heading to the same channel as

the valid blocks from the first region will propagate up to the fourth BS_CALC. The following

figure shows an extended version of the initial design (Figure 3.12).

38

Fig. 3.12 BS_CTRL – Four regions and four Channels

3.3.6 Demux

The main purpose of the demuxes is to route auxiliary signals only to the destined channels.

Each Barrel Shifter has its own DEMUX, whose select signal is the Channel ID associated with

the given Barrel Shifter (or packet). Note that the demux is required only for the auxiliary

signals. The data from the Barrel Shifters can be routed directly to each channel, as the Block

Valid signal is responsible for the correct selection.

3.3.7 Channel – Packet Accumulator

The purpose of each Channel is to complete a Super-Packet from the incoming blocks

with the same Channel ID and to ensure that it reaches the length set by the generic parameter.

But the completion itself is not enough as the data would be without a context. For this reason,

a MFB protocol must be recreated and must match with the SOF/SOF_POS of the first packet

and EOF /EOF_POS of the last packet within the Super-Packet. For this purpose, the following

structure has been designed to assemble the blocks coming from the Barrel Shifters and to

decode their auxiliary signals.

At the input of the Channel component, there is an array of multiplexers whose task is

to select valid blocks from each Barrel Shifter. For the MFB configuration MFB#(1,4,8,8),

there are four two-input muxes (one for each block) whose select signal is generated

in the MUX_CTRL subcomponent. The select signal for each multiplexer is encoded

in the Block Valid array. Since the bits in the array do not interfere (thanks to the demux),

the select signal is extracted as the index of the array whose block bit is set high.

The same principle applies to the auxiliary signals (SOF_OH, EOF_OH, LNG).

39

Fig. 3.13 The internal structure of the channel unit – Configuration MFB#(1,4,8,8)

Once the valid blocks have been selected, each MUX output is routed to the assembly

register and to the DATA_SEL component. If the number of incoming valid blocks does not

fill the data word, the incoming blocks are saved in the assembly register. To know which

blocks to save, the value of the Pointer is used to lock the valid blocks until the word is ready

to be processed. The DATA_SEL component is used to handle any overflow. The following

figure (Figure 3.14) illustrates how the blocks are processed when the assembly register

overflows. The blocks are shifted in such a way that the overflowed blocks are saved in the

assembly register, and those that make up the word are selected by the DATA_SEL component.

The overflow signal itself is used to indicate whether the word is ready or not, and the pointer

is used to select the blocks that make up the word.

Fig. 3.14 Overflow processing

When the data word is complete, SOF_OH and EOF_OH are converted back to MFB

control signals. That is SOF, EOF, SOF_POS and EOF_POS. This is done by converting

40

the bit that is set high to its index within the vector. Note that only one of these bits can occur

in each region. Finished and aligned packets are sent to the FIFO where they wait

until the Super-Packet is completed.

The last auxiliary signal to be processed is the length of the regular packets. This is extracted

from the block where the SOF bit is set high. The length is then passed together with SOF and

EOF to the SPKT_LNG component. The task of this component is to count the number

of packets in the FIFO and sum their lengths. If the sum exceeds the minimum length

of the Super-Packet, it sets the internal SRC_RDY signal to notify FIFO_CTRL that the Super-

Packet is ready. The number of packets to be read from the FIFO and the length of the finished

Super-Packet are sent along with this SRC_RDY signal. A timeout signal is also connected

to ensure that packets are not stuck in the Channel for too long. When the timeout triggers,

the Super-Packet is marked as ready, even though the desired (minimum) length has not yet

been reached. The timeout component continuously checks the status of the register, and if

the last valid block is marked with EOF, the timeout counter starts counting. The counter does

not begin counting if there is an incomplete packet.

The last part of the Channel component is FIFO_CTRL. Its task is to wait

for the SPKT_LNG to set SRC_RDY high and load its data. Once it has all the data it needs

to operate, it starts to read packets from FIFO. Its task is to pass the Super-Packet length

to the output of the Channel component and to create new MFB control signals, such as SOF

or EOF, to form a Super-Packet. These control signals are created by masking the SOFs or

EOFs of small packets coming from the FIFO. Note that this description is given

for the MFB(1,4,8,8) configuration, but the component can handle more demanding

configurations, such as MFB(4,8,8,8).

3.3.8 Merger

Once the Super-Packet has been created, it needs to be propagated to the output MFB stream.

The merge of the several MFB streams is usually done by a component called

the MFB_MERGER. Initially, this version, which is generally available in the OFM library,

was used. However, it was unsatisfactory in terms of resource consumption. This was due

to the structure of this component, which covers many scenarios that do not occur in this case.

For this reason, a simplified version of this component was created. The internal structure

of the Frame Packer’s MERGER has been adapted to work as the larger multiplexer

with the internal select signal. This merger takes advantage of the properties of Super-Packets

and treats them as if they were carried over a single-region bus, which is, however, extended

to a larger width. The select signal for this merger is internal and switches between the inputs

(channels) that are marked as ready and gives each input the same opportunity to send its

Super-Packet. After the Super-Packet has been sent, it tries to switch to another input marked

as ready. Since this component knows from which input it is reading the data, the Channel ID

is added to each packet’s metadata. Together with the packet length, this metadata is sent to

the MVB FIFO, which creates MVB headers for the Super-Packets.

41

4 TESTING

After designing the component, it was essential to test whether the proposed architecture

of the Frame Packer fulfils the requirements outlined in Chapter 3.1. Firstly, a set of functional

tests was performed to verify functionality of the VHDL code in corner cases. Later,

the component implemented into target FPGAs was also tested on real hardware to ensure that

timing requirements were met and that the resources required did not exceed the resources

available on the FPGAs. Finally, performance tests were executed to ensure that the component

is not blocking the traffic and meets intended throughput requirements. The performance test is

also essential as the objective of this component was to increase small packet throughput via

DMA and PCIe while not affecting performance for big packets. Although the aim of this thesis

is to achieve 400G throughput, the 100G version was also tested. The principle and VHDL

models are the same for both designs, but some cases may differ. These cases needs to be tested

as well, since both versions are required to work. The reason for this is that lower throughput

requires fewer resources, allowing the smaller and cheaper FPGAs to take advantage of this

design. All tests that verify the functionality of the design are described in this chapter.

4.1 UVM Verification

For the purpose of functional testing, verification was implemented using the Universal

Verification Methodology (UVM). The UVM is generally used to test the NDK components,

as it is widely supported within the NDK platform. Its reusability allows drivers and monitors

to be reused for NDK-specific protocols (MFB, MVB, and MI). Many tests, such as the

compliance of the interfaces with the MFB protocol, are already implemented as a standard set

of tests in the OFM library. The remaining tasks were to set up a verification environment,

implement a reference verification model of the Frame Packer and define what the component

should be able to do.

4.1.1 Test Environment

In the UVM verification, the test environment typically includes components for handling

communication with the Device Under Test (DUT) (monitor and driver) and component

for evaluating that communication (scoreboard). These components are specific for each type

of interface. The ones for the MFB and MVB interfaces were already available in the OFM

library. However, for the MVB, the packet length must be based on the actual length

of the packets sent to the DUT. Otherwise, the length would be random and therefore useless

in the context of the DUT. Because of this requirement, the standard sequencer can only be

used for the Channel ID. Therefore, the lengths that go to the MVB interface are extracted from

the MFB sequence items in the generator. The following figure illustrates the structure

of the environment for the test of the Frame Packer (Figure 4.1).

42

Fig. 4.1 Test Environment for the functional verification

4.1.2 Scoreboard

The role of the scoreboard is to verify that the data returned by the DUT is correct. To do this,

a model of the Frame Packer is required as a reference for this evaluation. The simplest way to

create a model would be to use the minimum length that all Super Packets should have and start

concatenating packets from the same channel. However, this is not possible due to the timeout

that can occur in the DUT. When the timeout is triggered, the currently accumulated packets

are marked as a Super-Packet, even though the length has not reached the minimum size.

This would not be easy to implement in the model as it is difficult to simulate the timeout in

the DUT. This is due to the fact that verification processes entire transactions (packets) rather

than data words like the DUT. For this reason, a probe is implemented instead. This probe is

connected to each channel unit of the Frame Packer and looks at the number of packets

processed and the number of packets that make up the Super-Packet. Then the model only

concatenates the set number of packets from the given channel as reported by the probe.

In addition, there is no need to test the timeout mechanism of the Frame Packer, as the packet

length would be different, or the packets would be stuck in the design if the timeout failed.

In the latter case, the timeout implemented in the comparator of the verification would trigger

an error. This comparator is available in the OFM library and is used to compare the data itself.

One of its features is that there is an implemented timeout which raises an error if the data

from the DUT hasn't arrived within a specified time.

43

To test the output MVB interface, a simple if statement has been added to check that the

size of the packet received is the same as the length specified in the MVB metadata.

The protocol of each bus is controlled by a built-in mechanism called a Property Check, which

is implemented in the testbench. Its task is to detect any violation of the protocol by checking

control signals of the given bus. These methods guarantee the functionality of the Frame Packer

and the integrity of the data.

For performance testing, the scoreboard implements the speed meter. Its only task is

to measure the input and output speed. The measurement is performed periodically every 10 us

of simulation time. This method does not give the exact throughput of the DUT, but it does give

a pretty good insight into the state of SRC_RDY at the output. This flag indicates the readiness

of the DUT to send data, i.e. whether it is able to handle new data or not. The input speed is

used as a reference, as the input speed also influences the output performance. Summary

statistics, such as mean and standard deviation, have also been added in order to evaluate

the measured data properly.

4.1.3 Tests

In order to verify the functionality of the Frame Packer, it is necessary to define a set of test

cases that cover all the requirements of the component as defined in Chapter 3.1. It would be

highly impractical to test all the combinations that can occur on the input, as this number

approaches infinity, therefore it is necessary to define a plan. This plan is called the verification

plan and is usually based on the expected functionality of the system. For the Frame Packer,

these requirements are in Appendix A and are defined as follows.

The first requirement (REQ_0) is to concatenate the packets so that they behave as one

Super-Packet. This requirement is essential for the Frame Packer to work properly. The second

requirement (REQ_1) is the alignment of the packets within the Super-Packet. The verification

should be able to ignore empty spaces when comparing each byte of the Super-Packet. REQ_2

refers to maximum length of the packet, which is defined by a generic parameter Maximum

Transfer Unit (MTU). If this requirement is violated, the DMA will most likely get stuck.

REQ_3 considers the size of the Super-Packet that the Frame Packer tries to reach. It is set by

a generic parameter. REQ_4 refers to the number of channels. The goal was to create a 400G

version. This speed requires at least 32 channels. As the design is available for 100G (which

can work with fewer DMA channels), the number of channels can also be set by a generic

parameter. REQ_5 is called Channel Coherence. This requirement is essential to the operation

of the digital circuit as the packets within the Super-Packet must have the same Channel ID.

This requirement is extended by REQ_6 which restricts packet overtaking within the channel.

Packets must be sent in the same order as they were received at the input. REQ_7 prevents

packets from getting stuck in the channel for too long by using the timeout. This problem occurs

when the Super-Packet is not assembled, and no other incoming packets have the same channel

ID. The timeout can be set generically, so the verification should be provided for several

timeout periods. Requests from 8 to 10 are related to the functional test of the component, using

44

different packet sizes. REQ_11 requests correct functionality of the previous tests for the MFB

configuration MFB#(1,8,8,8). REQ_12 requires the functionality of the previous tests for

the MFB configuration MFB#(4,8,8,8). The results are presented in the final chapter in

the Verification Results section (Chapter 5.1).

To verify the functionality of the Frame Packer, a test called ex_test is used. It uses a basic

sequence library available in the OFM repository. This sequence is partially configurable and

highly randomized. The sizes of the packets sent to the DUT are randomized by several

functions (Gauss, Increment, Decrement, Constant) to test the most common scenarios.

To utilize these sequences, it would be necessary to write specific drivers or monitors to handle

each bus interface. As the MFB (and MVB) interface is common for most of the components

within the NDK, the OFM library contains reusable agents that handle that. These agents

communicate directly with the signals on the respective interfaces of the DUT and also check

compliance with the bus protocols described in Chapter 1.1. In addition, the agent is able to put

random gaps between packets and align the packets within the word randomly. Similarly to the

randomization of data length in the sequence, the agents are also configurable and can generate

randomized traffic to test the DUT under different stresses.

Once the functionality of the component is tested (within the given requirements), it is

useful to have an insight into its performance. The ex_test is not suitable for this purpose as it

tries to test most of the cases that might occur. For this reason, another test has been

implemented that configures the agents and sequences in such a way that the bus is fully

utilized. To push the DUT to its limits, a test called speed was used. This test sends the data to

the DUT as fast as possible and without spaces between the packets. Its only randomized

parameter is the length of the packets. Gaps between packets should be minimal or non-existent.

Using the speed meters in the scoreboard, it is possible to determine whether the component is

able to handle full traffic.

4.2 Hardware Test

Even if the Frame Packer works in the simulation as a standalone module, this does not

necessarily mean that it works in the target hardware. The main reason for the hardware tests is

to measure the real performance of the component within the NDK, as the throughput provided

by the verification is only an approximation.

To test any application, it is necessary to implement it in an environment similar

to the final typical system. The NDK-APP-Minimal design is used for this purpose.

As the name suggests, this design is NDK-based and is equipped with the minimal possible

application core (see Chapter 1) in order to function. Its only purpose is to provide

interconnection between the DMA and Ethernet modules. As the Frame Packer should be

placed before the DMA module (in the RX path) to measure its real performance,

the application core is a suitable place for testing. To distribute packets to different DMA

channels, the app-core is equipped with a channel router. This component enables the user

to modify the MVB header of each packet to route the packets in a couple of different modes

45

such as a round-robin distribution mode. The last component present in the test environment is

called the MFB_PIPE. This component serves as a register for the MFB bus and helps

in the final build of the design. The customized Application Core is shown in the figure below

(Figure 4.2) and is named as NDK-APP-FramePacker in order to distinguish

it from the minimal NDK design.

Fig. 4.2 Implementation of the Frame Packer in the Application Core

To test basic functionality, the NDK is equipped with a set of debug components.

These include hardware packet generators, speed meters, debug counters, and configurable

switches. Control of these integrated features is achieved using software tools, such as the NDP

(Netcope Data Plane) and NFB (Netcope FPGA Board) tools. The NDP tools are used to send

and read data to/from the host PC from/to the FPGA card using the PCI-express (DMA).

The NFB tools are used to access the control registers of the internal components (switches,

counters...). These registers are accessed via the MI network (see Chapter 1).

One of the debug components used to test the performance of the Frame Packer is called

the Generator Loopback Switch (GLS). This component is located between the Application

Core and the DMA modules and allows debugging of the NDK using, as the name suggests,

packet generators, loopbacks, and switches. To measure the speed, it is also equipped

with speed-meters, which are basically counters of valid bytes that can be accessed using NFB

tools. The real speed is evaluated by the software with the knowledge of the frequency

at which the FPGA design operates. The internal structure of the GLS is shown

in the Figure 4.3.

In this test, the GLS is configured as follows. The MUX D is set to use the TX hardware

generator. It would be possible to use software-generated packets at this point, but this would

affect the throughput due to the heavier overall load on the system (PCIe, CPU, RAM).

The MUX B is set to pass data from the generator to the Network module, where an internal

loopback is located to return the data to the RX pipeline. This loopback is also configured using

the NFB tools. When the data stream comes back, it goes through the application core

(Frame Packer) and through MUX C and MUX A. At this point, the data stream flows

to the software via DMA and PCI Express Modules. The throughput is measured using speed

meters that are connected to the MI and controlled by MI requests from the NFB tool.

46

Note that the software (or any other part) does not check the correctness (integrity)

of the received packets. This test only evaluates the throughput of the design.

Fig. 4.3 Structure of the Generator Loopback Switch

In order to control individual registers in an automated way, there is a Python script

available in OFM that allows the user to measure throughput with a single command. This script

is called gls_mod.py and is able to output the measurement data into a .csv file. The results

of this measurement are summarized in the following chapter.

47

5 RESULTS

The last chapter of this thesis summarizes the results of the tests presented in the previous

chapter. In addition to the functional test, the results of the performance within the verification

and hardware are presented as well.

5.1 Verification Results

The functional test of the proposed design has met all the requirements described in the previous

chapter. These requirements are listed in Appendix A in the form of a table. Table 5.1

summarizes the results of the testing including the method used for testing the requirement.

Table 5.1 Results of the Verification

 REQ ID REQ Name Test (Chapter 4.1.3) Status

REQ_0 Packet Concatenation test::ex_test PASS

REQ_1 Packet Alignment test::ex_test PASS

REQ_2 Maximum Packet Size test::ex_test PASS

REQ_3 Optimal Packet Size test::ex_test PASS

REQ_4 Multiple Channels test::ex_test PASS

REQ_5 Channel Coherence test::ex_test PASS

REQ_6 Channel Order test::ex_test PASS

REQ_7 Timeout
test::ex_test + TIMEOUT = 32,

1024, 4096
PASS

REQ_8 Small Packet Test test::ex_test + MAX_SIZE = 128 PASS

REQ_9 Big Packet Test
test::ex_test + MIN_SIZE =

2**13
PASS

REQ_10 Random Size test::ex_test PASS

REQ_11 One Region test::ex_test + REGIONS = 1 PASS

REQ_12 Four Regions test::ex_test + REGIONS = 4 PASS

48

Although the verification has covered all test cases, it does not necessarily mean the design

is bug-free. There may still be combinations that weren't tested or thought of. For this reason,

a "test of the test" was performed in the form of code coverage. This method can give feedback

on the quality of the verification by returning a percentage of the code checked during

the verification runs. This percentage includes covered branches, conditions, signal toggles,

statements, or even FSM transitions.

Fig. 5.1 Report of the Code Coverage – Questa Sim

The report shown in Figure 5.1, generated by Questa Sim, has returned a coverage

of 94.5%. This result was obtained after excluding all coverage types that are not relevant

to the verification of the Frame Packer. For example, this was a generic input

of the subcomponents (such as the DEVICE name) or the toggle of the reference signals

(SOF_POS(0)). The remaining 5% might appear like a big number, but it is (ironically) caused

by parts of the code that were added to fix errors found by the ex_test with different seeds.

In conclusion, there is still room for improvement in the verification, but it would be

overwhelmingly time-consuming, as these cases were detected in specific scenarios that are not

so easy to replicate.

Note that the coverage is merged from multiple test runs. This was performed using

multi_ver.py, a Python script for running multiple tests with different generic parameters.

In this case, the number of regions of the MFB word was changed, along with the different

timeout length and Super-Packet size.

To evaluate the performance within the verification, a speed-meter located in the scoreboard

was used. This speed-meter is a simple construct that counts the number of bytes received

49

in the specified period of the simulation time. At the end of the verification, the function returns

a set of statistical values such as minimum (min), maximum (max), average (avg) and standard

deviation (st_dev). These results are given for the output speed and length. For testing purposes,

the value of the generic parameters was selected as follows. The FIFO accumulating Super-

Packets in each channel is set to 512 items. This is 131072 bytes of memory per channel in the

case of 4 regions and 32768 bytes for 1 region. This FIFO depth was chosen as it is the most

efficient for the utilization of the BRAM blocks. The TIMEOUT was set to 4096 clock cycles

as this resulted in best performance in previous tests. The number of channels was chosen based

on the real application requirements for the given throughput.

The Table 5.2 and Table 5.3 summarize the performance results for the 100G and 400G

versions in the speed test verification. The tables show the statistical value for the output speed

and packet length for the given parameters SPKT_SIZE_MIN and FRAME_SIZE_MAX.

The SPKT_SIZE_MIN parameter represents the length of the Super-Packet that is being

targeted. FRAME_SIZE_MAX represents the maximum length of the INPUT packets.

The minimum value is set to 64B as this is the minimum length of the Ethernet packet.

The length of the input packets is randomly distributed within the set range. The purpose of this

parameter is to give an insight into the performance in different length ranges. Note that

the throughput value is only a hint to whether the designed architecture can handle the target

speed or not. The actual throughput can be obtained from the hardware performance test,

the results of which are presented in the following section.

Table 5.2 Results of Verification performance test – 100 G

REGIONS = 1, TIMEOUT = 4096, FIFO_DEPTH = 512, CHANNELS = 16

TX_Speed [Gbps] TX_Length [B]

min max avg st_dev min max avg st_dev
SPKT_SIZE_MIN

[B]

FRAME_SIZE_MAX

[B]

3 98 96 9 96 1016 967 40 1024 128

0 100 99 8 104 2040 1987 87 2048 128

5 102 99 9 72 4088 4025 201 4096 128

7 102 99 11 168 8184 8066 656 8192 128

0 97 94 9 72 1024 780 165 1024 1024

1 100 98 9 456 2040 1742 215 2048 1024

5 102 100 8 744 4088 3700 307 4096 1024

7 102 101 9 392 8184 7799 446 8192 1024

17 102 98 11 72 8160 3673 2177 1024 8192

3 102 98 12 88 8184 3771 2068 2048 8192

1 102 99 10 96 8168 4625 1974 4096 8192

6 102 99 14 592 8192 5947 1354 8192 8192

50

Table 5.3 Results of Verification performance test – 400 G

REGIONS = 4, TIMEOUT = 4096, FIFO_DEPTH = 512, CHANNELS = 32

TX_Speed [Gbps] TX_Length [B]

min max avg st_dev min max avg st_dev
SPKT_SIZE_MIN

[B]

FRAME_SIZE_MAX

[B]

8 332 271 116 248 1200 862 113 1024 128

16 365 209 174 248 2232 1813 284 2048 128

12 388 307 136 496 4088 3837 440 4096 128

2 401 333 130 408 8184 7427 1599 8192 128

18 321 309 12 128 1208 775 176 1024 1024

12 365 337 80 904 2040 1736 249 2048 1024

9 389 364 81 944 4088 3707 357 4096 1024

5 404 376 87 800 8184 7712 887 8192 1024

26 398 366 74 88 8176 4074 2620 1024 8192

9 398 355 97 96 8080 4877 1945 2048 8192

29 399 385 32 88 8192 4718 1711 4096 8192

30 398 360 90 1616 8176 6002 1181 8192 8192

The output throughput of the Frame Packer is given by the effectiveness of the merging

mechanism. If the final Super-Packet is smaller, the MERGER must read from each channel

more often. This creates overhead because there are empty spaces between Super-Packets.

This effect can be reduced by making the Super-Packet larger, as the results from the previous

tables (Table 5.2, Table 5.3) suggest. Especially for smaller input packets.

5.2 Implementation Results

Since the theoretical functionality of the Frame Packer has been verified, it would make sense

that it would work in hardware. In reality, however, it may not be that simple, as the resources

and maximum frequency on the FPGA are limited. The Frame Packer is configurable, so two

versions were implemented: 100G and 400G with the required number of channels for each

speed. Results for the 100G version are available for both Intel and AMD FPGAs. The 400G

version is only available for Intel's Agilex family of FPGAs. This part of the thesis is dedicated

to the implementation of the mentioned versions on the FPGA with and without NDK minimal

design. The version of the design with the Frame Packer is called NDK-APP-FramePacker

to distinguish it from the NDK-APP-Minimal. The last part of this chapter is dedicated to testing

NDK-APP-FramePacker on real hardware to evaluate its real performance. The following

tables present FPGA resource usage for the 100G version (Intel, AMD) of the Frame Packer.

51

For such speed, at least 16 Channels are required.

Table 5.4 Frame Packer-100G & 16 Channels - Intel Stratix 10 1SD280PT2F551VG

 Used Available Percentage

ALM 19352 933120 2%

ALUT 29376 N/A N/A

FF 17207 N/A N/A

M20K (BRAM) 225 11721 2%

DSP 0 5760 0%

Memory ALUT 256 N/A N/A

LAB 2647 93312 3%

Table 5.5 Frame Packer-100G & 16 Channels - AMD Virtex UltraScale+ xcvu7p

 Used Available Percentage

LUT 26245 788160 3.33%

LUTRAM 160 394560 0.04%

FF 15983 1576320 1.01%

BRAM 128.5 1440 8.92%

The 100G version of the Frame Packer on the Intel device requires about 2% of the Adaptive

Logic Modules (ALMs), 30,000 Adaptive Look-Up Tables (ALUTs), and about 17,000 Flip-

Flops (FFs). Similar results for LUTs and FFs are also found on the AMD FPGA. These results

are positive when compared to the minimal NDK design (more to that later) and when

considering the impact on performance of the NDK system. While Intel’s BRAM utilization is

around 2%, AMD’s is close to 9%. This is due to differences in available BRAMs on AMD

FPGA and the current optimization of Frame Packer FIFOs for Intel’s M20K BRAMs.

BRAMs are a critical resource for NDK application development, and maximizing their

efficiency is important. In terms of timing, the maximum frequency that can be reached

on the Stratix 10 FPGA is 199.4 MHz, while the implementation on the UltraScale+ FPGA can

reach up to 213.17 MHz. Therefore, both implementations can run on the FPGA because

the frequency required for 100G transfer is 200 MHz.

The resources required for the 400G version are shown in the following tables. There are

three examples of resource usage for three different configurations: 8 channels, 16 channels,

and 32 channels. As you can see, as the number of channels in the design increases, so does

the number of resources and with that the timing requirements as well.

52

Table 5.6 Frame Packer-400G & 8 Channels - Intel Agilex AGIB027R29A1E2VR0

 Used Available Percentage

ALM 84964 912800 9%

ALUT 131869 N/A N/A

FF 65110 N/A N/A

M20K (BRAM) 426 13272 3%

DSP 0 8528 0%

Memory ALUT 960 N/A N/A

LAB 10876 91280 12%

Table 5.7 Frame Packer-400G & 16 Channels - Intel Agilex AGIB027R29A1E2VR0

 Used Available Percentage

ALM 139194 912800 16%

ALUT 223091 N/A N/A

FF 76247 N/A N/A

M20K (BRAM) 850 13272 6%

DSP 0 8528 0%

Memory ALUT 1024 N/A N/A

LAB 18774 91280 21%

Table 5.8 Frame Packer-400G & 32 Channels - Intel Agilex AGIB027R29A1E2VR0

 Used Available Percentage

ALM 253479 912800 28%

ALUT 409099 N/A N/A

FF 127722 N/A N/A

M20K (BRAM) 1698 13272 13%

DSP 0 8528 0%

Memory ALUT 1088 N/A N/A

LAB 34083 91280 37%

The first thing to notice is that the FPGA used is much larger than that used in the 100G

version. The 32-channel version of the Frame Packer would require 28% of the ALMs, 409,099

ALUTs, and almost 13% of the BRAMs. The timing requirements for this version are so high

53

that it would only run at 92.36 MHz. The 16-channel version requires 16% of the ALMs,

223,091 ALUTs and 6% of the BRAMs. The maximum frequency goes up to 156.99 MHz.

Still not enough, but it shows a trend that can be used for the next generation of Frame Packer.

The last version with 8 channels needs 9% of the ALMs, 131,869 ALUTs, and 3%

of the BRAMs. The maximum frequency is 207.81 MHz, which meets the timing requirements.

These results point to the main problem with the Frame Packer - the channels. Each of them

consumes a significant number of resources, which leads to problems when more channels are

used. This brings us to the idea of a next generation Frame Packer where a number of channels

are set to be shared or dynamically allocated. This would reduce the resources needed and

improve timing requirements.

The final part, which involves building the design, are the tables summarizing the resource

usage of NDK-APP-Minimal and NDK-APP-FramePacker. The following table shows

the 100G build for the SmartNIC N6010 FPGA card. The FPGA on this card

(Intel(R) Agilex ™ AGF014) is slightly smaller than the one used in the previous builds but

has better timing characteristics. The aim of this part is to provide a context of the size

of the Frame Packer within the NDK design.

Table 5.9 NDK-APP-Minimal - 100G SmartNIC N6010

 Used Available Percentage

ALM 198706 487200 41%

ALUT 193792 N/A N/A

FF 332198 N/A N/A

M20K (BRAM) 1140 7110 16%

DSP 16 4510 <1%

Memory ALUT 25066 N/A N/A

LAB 24960 48720 51%

Table 5.10 NDK-APP-FramePacker - 100G SmartNIC N6010

 Used Available Percentage

ALM 227819 487200 47%

ALUT 237332 N/A N/A

FF 364616 N/A N/A

M20K (BRAM) 1372 7110 19%

DSP 16 4510 <1%

Memory ALUT 25808 N/A N/A

LAB 28913 48720 59%

54

The 100G version of the NDK-APP-Minimal requires at least 41% of the ALMs, 193,792

of the ALUTs, and 16% of the BRAMs. With the addition of the Frame Packer, these numbers

jump to 47% for ALMs, 237,332 for ALUTs, and 19% for BRAMs. These numbers suggest

the Frame Packer is suitable for the 100G transfer rate.

The last build would be for the 400G design, but unfortunately this build failed due

to the high demands on the FPGA resources. Quartus was unable to route the design within

the NDK. For context, only the minimal version of the 400G NDK design is presented.

The only board available for this build is the XpressSX AGI-FH400G with Intel Agilex I-Series

FPGA which is proportionally bigger than FPGAs used for 100G transfer rate. Similar to

the 100G version of the NDK, the 400G design uses about 50% of the logic resources and 20%

of the BRAMs.

Table 5.11 NDK-APP-Minimal - 400G XpressSX AGI-FH400G

 Used Available Percentage

ALM 457655 912800 50%

ALUT 445394 N/A N/A

FF 739740 N/A N/A

M20K (BRAM) 2458 13272 19%

DSP 20 8528 <1%

Memory ALUT 50951 N/A N/A

LAB 58481 91280 64%

5.3 Hardware Test Results

The last part of this section is dedicated to performance testing using the previously created

builds for the N6010 (Intel) and NFB-200G2QLP (AMD). Note that the card with the AMD

FPGA only runs at 100G, even though it is marked as 200G. Due to the high resource usage

of the 400G Frame Packer version, only the 100G version is tested.

The first figure (Figure 5.2) shows the throughput of the system versus the length of the

packets sent by the NDK design. This design was uploaded to the N6010 and tested on machines

with different processor types. From left to right is the performance of the NDK-APP-Minimal

on the machine with an Intel processor. The performance on the smaller packets is low due

to the handling of PCIe credits and DMA descriptors. The same applies to the minimal design

on the machine with an AMD processor. The difference between them is due to the nature

of handling communication. The red line in the graph represents the ideal Ethernet throughput,

and just above it is the line showing the throughput with the NDK-APP-FramePacker design.

The reason it performs better than the theoretical Ethernet is due to the way the NDK measures

the data flow. The speed meter does not unpack the Super-Packets, so the empty spaces within

the Super-Packet are also counted. These empty spaces have a greater effect on the smaller

55

packets, while the large packets are able to suppress this effect. Just for a reminder, these spaces

are there because of the block alignment.

Note that these tests were executed on host PCs named Sevar and Laurot. The Sevar is

equipped with the Intel(R) Xeon(R) CPU E5-2630 and 64GB of DDR4 RAM, while the Laurot

is equipped with the AMD EPYC 7402 24-core processor and 128 GB of DDR4 RAM. Both

use the PCIe 4.0 to communicate with the FPGA card. The Frame Packer was tested on both

host PCs and performed equally well.

Fig. 5.2 Hardware performance test – Intel FPGA (N6010)

The second measurement (Figure 5.3) is performed on the NFB-200G2QLP FPGA card on

a host PC called Emilion. This machine is equipped with an Intel(R) Xeon(R) CPU E5-2620

and 64GB DDR4 of memory. In contrast to the previous test, this card did not perform so well

compared to the Agilex family of FPGAs. This is unfortunate for the NDK, but great for

the Frame Packer, as the measurement proves that the designed component is able to boost

the performance even if the target card/system is not as powerful. Another difference between

these graphs is that the throughput of the 64B packets starts at 90 Gbps. This indicates that there

may be a problem with this measurement, such as an incorrect working frequency. This could

affect the measurement as it is the software that calculates the speed, and it uses an application

core frequency to do so. This measurement should therefore be taken with a grain of salt.

56

Fig. 5.3 Hardware performance test – AMD FPGA (200G2QLP)

57

CONCLUSION

The goal of this thesis was to gain a full understanding of the NDK framework and its specific

communication protocols in order to create a compatible digital circuit. The purpose of this

digital circuit was to accumulate packets from the same virtual lanes at transfer rates up

to 400 Gbps. The reason for creating such a digital circuit is that due to the transfer overhead

on the PCIe and inefficient descriptor usage by the DMA controller, the throughput over

the PCIe (DMA) is low when transferring small packets. Both beforementioned issues can be

reduced by creating larger units from multiple smaller packets. The digital circuit capable

of creating such units from the accumulated packets is called the Frame Packer.

The final design was achieved after creating several prototypes that helped uncover

the problem and take them into account when designing the current version. The obstacles

present in most of the prototypes were the control mechanism of the Frame Packer and

the amount of FPGA resources required. Problems with the management of the packet

alignment were solved by dividing the Frame Packer into several stages and a control unit that

performed a simple calculation at the end. The issues with the resources were mostly solved by

using integrated memory blocks (BRAMs) instead of common logic resources.

The final goal was to verify the functionality of the designed architecture using the UVM

methodology. For this purpose, a verification plan was created based on the requirements listed

in Chapter 3. These represent the minimum the digital circuit must meet to function properly

within the NDK. As concluded in the last chapter, the design has met all the requirements stated

in the verification plan. The last chapter also summarizes the code coverage and

the performance tests within the verification and hardware. The final result of the code coverage

is 94.5%. The verification performance test showed that the design is able to handle high-speed

transfers without slowing down the traffic. The performance test that used the real network card

proved the 100G version is able to increase the transfer rate for small packets significantly.

The 400G version of the Frame Packer also passed the verification.

As for the implementation, it was possible to implement an 8-channel variant that could operate

at 200 Mhz. When implementing the design in the NDK, a 400G design expects at least 32

channels (due to the DMA requirements). This makes it quite difficult to implement the Frame

Packer in the available FPGA because it requires many resources. Therefore, optimization is

needed to reduce the number of physical channels. This could be done by sharing a physical

channel with multiple virtual lanes.

In terms of real-world applications, based on the results, this component could be used

in monitoring high-speed networks, particularly networks up to 100 Gbps. That is because

the 100G version of the Frame Packer requires an adequate number of resources. On the other

hand, this component is not suitable for applications such as High Frequency Trading (HFT),

as this component increases the transmission latency. This is due to the nature of the component,

which is based on buffering and concatenating packets.

58

LITERATURE
[1] CESNET Z.S.P.O. Network Development Kit [online]. [cit. 2023-11-17]. Dostupné z:

https://www.liberouter.org/ndk/

[2] CESNET Z.S.P.O. CORE of Network Development Kit (NDK) [online]. 2023 [cit.

2023-11-17]. Dostupné z: https://github.com/CESNET/ndk-core

[3] CESNET Z.S.P.O. OFM repository [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://github.com/CESNET/ofm

[4] CESNET Z.S.P.O. FPGA cards files with open support for the NDK [online]. 2023 [cit.

2023-11-17]. Dostupné z: https://github.com/CESNET/ndk-cards-open

[5] CESNET Z.S.P.O. NDK architecture [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/readme.html

[6] CESNET Z.S.P.O. The Network Module [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/eth.html

[7] CESNET Z.S.P.O. The PCIe module [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/pcie.html

[8] CESNET Z.S.P.O. The Memory Controller [online]. 2023 [cit. 2023-11-17]. Dostupné

z: https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/mem.html

[9] CESNET Z.S.P.O. The DMA module [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/dma.html

[10] CESNET Z.S.P.O. Time Stamp Unit [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/tsu.html

[11] CESNET Z.S.P.O. MI specification [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/mi_tools/readme.html

[12] CESNET Z.S.P.O. MVB Specification [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/mi_tools/readme.html

[13] CESNET Z.S.P.O. MFB specification [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/mfb_tools/readme.html

[14] CESNET Z.S.P.O. MI Transaction Controller [online]. 2023 [cit. 2023-11-17].

Dostupné z: https://cesnet.github.io/ndk-app-

minimal/devel/ofm_doc/comp/pcie/mtc/readme.html

[15] CESNET Z.S.P.O. N_LOOP_OP [online]. 2023 [cit. 2023-11-17]. Dostupné z:

https://cesnet.github.io/ndk-app-

minimal/devel/ofm_doc/comp/base/logic/n_loop_op/readme.html#n-loop-op

[16] KEKELY, Lukáš, Jakub CABAL, Viktor PUŠ a Jan KOŘENEK. Multi Buses:

Theory and Practical Considerations of Data Bus Width Scaling in FPGAs [online].

Kranj, Slovenia: IEEE, 2020 [cit. 2023-11-17]. Dostupné z:

https://ieeexplore.ieee.org/document/9217811

[17] ARM LTD. AMBA® AXI-Stream: Protocol Specification [online]. [cit. 2023-11-

17]. Dostupné z: https://documentation-

service.arm.com/static/64819f1516f0f201aa6b963c?token=

https://www.liberouter.org/ndk/
https://github.com/CESNET/ofm
https://github.com/CESNET/ndk-cards-open
https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/readme.html
https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/eth.html
https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/pcie.html
https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/mem.html
https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/dma.html
https://cesnet.github.io/ndk-app-minimal/devel/ndk_core/intel/doc/tsu.html
https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/mi_tools/readme.html
https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/mi_tools/readme.html
https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/mfb_tools/readme.html
https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/base/logic/n_loop_op/readme.html#n-loop-op
https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/base/logic/n_loop_op/readme.html#n-loop-op
https://ieeexplore.ieee.org/document/9217811
https://documentation-service.arm.com/static/64819f1516f0f201aa6b963c?token=
https://documentation-service.arm.com/static/64819f1516f0f201aa6b963c?token=

59

[18] INTEL. Avalon® Interface Specifications [online]. [cit. 2023-11-17]. Dostupné z:

https://cdrdv2-public.intel.com/667068/mnl_avalon_spec-683091-667068.pdf

[19] SCIENCE DIRECT. Ethernet overview [online]. [cit. 2023-11-17]. Dostupné z:

https://www.sciencedirect.com/topics/computer-science/minimum-frame-size

[20] AMD/XILINX. Understanding Performance of PCI Express Systems [online].

https://docs.xilinx.com/v/u/en-US/wp350 [cit. 2023-11-18].

[21] WHANGBO, Joonho, Kevin ANDERSON a Coleman HOOPER. Exploring

Industry Standard System Integration for Hardware-Software Co-Design of PCI

Express [online]. 2022 [cit. 2023-11-18]. Dostupné z:

https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-

F22/projects/reports/project5_report_ver2.pdf

[22] MCLELLAN, Paul. CADENCE. The History of PCIe [online]. 2021 [cit. 2023-11-

18]. Dostupné z: https://community.cadence.com/cadence_blogs_8/b/breakfast-

bytes/posts/pcie-the-next-generation

[23] XDA-DEVELOPERS. PCI Express 5 (PCIe 5.0) [online]. 2023 [cit. 2023-11-18].

Dostupné z: https://www.xda-developers.com/pcie-5/

[24] VERIEN DESIGN GROUP. PCI Express Topology [online]. 2018 [cit. 2023-11-

18]. Dostupné z: http://www.verien.com/pcie-primer.html

[25] GLOBALSPEC. Data Link Layer Architecture [online]. 2003 [cit. 2023-11-18].

Dostupné z: https://www.globalspec.com/reference/66552/203279/chapter-7-data-link-

layer-architecture

[26] SOUTHWELL, Simon. PCI Express Primer #2: Data Link Layer [online]. 2022

[cit. 2023-11-18]. Dostupné z: https://www.linkedin.com/pulse/pci-express-primer-2-

data-link-layer-simon-southwell

[27] SOUTHWELL, Simon. PCI Express Primer #1: Overview and Physical

Layer [online]. 2022 [cit. 2023-11-18]. Dostupné z:

https://www.linkedin.com/pulse/pci-express-primer-1-overview-physical-layer-simon-

southwell/

[28] OPEN4TECH. Direct Memory Access (DMA) in Embedded Systems [online]. [cit.

2023-12-24]. Dostupné z: https://open4tech.com/direct-memory-access-dma-in-

embedded-systems/

[29] AMD/XILINX. DMA/Bridge Subsystem for PCI Express Product Guide

(PG195) [online]. [cit. 2023-12-24]. Dostupné z: https://docs.xilinx.com/r/en-

US/pg195-pcie-dma/Descriptors

[30] AMD/XILINX. Stream Mode DMA [online]. [cit. 2023-12-26]. Dostupné z:

https://docs.xilinx.com/r/en-US/pg347-cpm-dma-bridge/Stream-Mode-

DMA?tocId=ozsDQ5~waYmCNHjO7tyQFQ

[31] KUBÁLEK, Jan, Jakub CABAL, Martin ŠPINLER a Radek IŠA. IEEE. DMA

Medusa: A Vendor-Independent FPGA-Based Architecture for 400 Gbps DMA

Transfers [online]. 2021 [cit. 2023-12-26]. Dostupné z:

https://ieeexplore.ieee.org/document/9444087

https://cdrdv2-public.intel.com/667068/mnl_avalon_spec-683091-667068.pdf
https://www.sciencedirect.com/topics/computer-science/minimum-frame-size
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F22/projects/reports/project5_report_ver2.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F22/projects/reports/project5_report_ver2.pdf
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/pcie-the-next-generation
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/pcie-the-next-generation
https://www.xda-developers.com/pcie-5/
http://www.verien.com/pcie-primer.html
https://www.globalspec.com/reference/66552/203279/chapter-7-data-link-layer-architecture
https://www.globalspec.com/reference/66552/203279/chapter-7-data-link-layer-architecture
https://www.linkedin.com/pulse/pci-express-primer-2-data-link-layer-simon-southwell
https://www.linkedin.com/pulse/pci-express-primer-2-data-link-layer-simon-southwell
https://www.linkedin.com/pulse/pci-express-primer-1-overview-physical-layer-simon-southwell/
https://www.linkedin.com/pulse/pci-express-primer-1-overview-physical-layer-simon-southwell/
https://open4tech.com/direct-memory-access-dma-in-embedded-systems/
https://open4tech.com/direct-memory-access-dma-in-embedded-systems/
https://docs.xilinx.com/r/en-US/pg195-pcie-dma/Descriptors
https://docs.xilinx.com/r/en-US/pg195-pcie-dma/Descriptors
https://docs.xilinx.com/r/en-US/pg347-cpm-dma-bridge/Stream-Mode-DMA?tocId=ozsDQ5~waYmCNHjO7tyQFQ
https://docs.xilinx.com/r/en-US/pg347-cpm-dma-bridge/Stream-Mode-DMA?tocId=ozsDQ5~waYmCNHjO7tyQFQ
https://ieeexplore.ieee.org/document/9444087

60

[32] CESNET Z.S.P.O. DMA Calypte [online]. [cit. 2023-12-26]. Dostupné z:

https://cesnet.github.io/ndk-app-

minimal/devel/ofm_doc/comp/dma/dma_calypte/readme.html

[33] CESNET Z.S.P.O. RX DMA Calypte [online]. [cit. 2023-12-26]. Dostupné z:

https://cesnet.github.io/ndk-app-

minimal/devel/ofm_doc/comp/dma/dma_calypte/comp/rx/readme.html

[34] INTEL. DMA Operation Flow [online]. [cit. 2023-12-26]. Dostupné z:

https://www.intel.com/content/www/us/en/docs/programmable/683390/quartus-prime-

pro-v17-0-arria-10/dma-operation-flow.html

[35] OPEN4TECH. Direct Memory Access (DMA) in Embedded Systems [online]. [cit.

2023-12-26]. Dostupné z: https://open4tech.com/direct-memory-access-dma-in-

embedded-systems/

[36] CESNET Z.S.P.O. Metadata Insertor [online]. [cit. 2024-04-09]. Dostupné z:

https://github.com/CESNET/ofm/tree/main/comp/mfb_tools/flow/metadata_insertor

[37] CESNET Z.S.P.O. Auxiliary signals [online]. [cit. 2024-04-09]. Dostupné z:

https://github.com/CESNET/ofm/tree/main/comp/mfb_tools/logic/auxiliary_signals

https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/dma/dma_calypte/readme.html
https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/dma/dma_calypte/readme.html
https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/dma/dma_calypte/comp/rx/readme.html
https://cesnet.github.io/ndk-app-minimal/devel/ofm_doc/comp/dma/dma_calypte/comp/rx/readme.html
https://www.intel.com/content/www/us/en/docs/programmable/683390/quartus-prime-pro-v17-0-arria-10/dma-operation-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683390/quartus-prime-pro-v17-0-arria-10/dma-operation-flow.html
https://open4tech.com/direct-memory-access-dma-in-embedded-systems/
https://open4tech.com/direct-memory-access-dma-in-embedded-systems/
https://github.com/CESNET/ofm/tree/main/comp/mfb_tools/flow/metadata_insertor

61

SYMBOLS

Abbreviations:

ACK Acknowledgement

AVMM Avalon Memory-Mapped Interface

AXI Advanced Extensible Interface

BRAM Block Random Access Memory

BUT Brno University of Technology

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DC Direct Current

DDR Double Data Rate

DLL Data Link Layer

DLLP Data Link Laye Packet

DMA Direct Memory Access

DUT Device Under Test

FIFO First In First Out

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GLS Generator Loopback Switch

IP Intellectual Property

ISO International Organization for Standardization

MFB Multi-Frame Bus

MI Memory Interface

MPS Maximum Payload Size

MVB Multi Value Bus

NACK Negative Acknowledgement

NDK Network Development Kit

NDP Netcope Data Plane

NFB Netcope FPGA Board

OFM Open FPGA Modules

OSI Open Systems Interconnection

PC Personal Computer

PCIe Peripheral Component Interconnect Express

PL Physical Layer

RAM Random Access Memory

TL Transaction Layer

TLP Transaction Layer Packet

UVM Universal Verification Methodology

62

Appendix A – Requirement Specification
ID Name Description

REQ_0 Packet Concatenation
Several packets behave as one. This requires correct

set of SOF and EOF flags.

REQ_1 Packet Alignment
The packets within the Super-Packet should be

aligned to the block.

REQ_2
Maximum Packet

Size

The size of the Super-Packet should not exceed the

length set by a parameter USR_PKT_SIZE_MAX.

REQ_3 Optimal Size
The average size of the Super-Packet should be

around set value.

REQ_4 Multiple Channels

The component should be able to handle packets

destined for multiple channels. The number of

channels is generically set.

REQ_5 Channel Coherence
The Super-Packet is made of packets with the same

Channel ID.

REQ_6 Channel Order

The packets from the same channel should be in the

same order in which they were sent to the DUT.

Overtake is not permitted.

REQ_7 Timeout
The component should be able to handle different

durations of timeout.

REQ_8 Small Packet Test

The component should handle stress tests when only

small packets are sent to the DUT. This test confirms

that the internal counters have correct length.

REQ_9 Big Packet Test
The component should handle stress tests when only

big packets are sent to the DUT.

REQ_10 Random Size
The component should handle the combination of

small and big packets.

REQ_11 One Region
The component should handle previous tests (REQ_0

– REQ_10) with configuration MFB#(1,8,8,8)

REQ_12 Four Regions
The component should handle previous tests (REQ_0

– REQ_10) with configuration MFB#(4,8,8,8)

63

Appendix B – Structure of the FP Directory
├── frame_packer/

│ ├── Modules.tcl

│ ├── synth/

│ │ └── Makefile

│ ├── uvm/

│ │ ├── tbench/

│ │ │ ├── env/

│ │ │ │ ├── env.sv

│ │ │ │ ├── generator.sv

│ │ │ │ ├── meter.sv

│ │ │ │ ├── model.sv

│ │ │ │ ├── pkg.sv

│ │ │ │ ├── scoreboard.sv

│ │ │ │ ├── scoreboard_cmp.sv

│ │ │ │ ├── sequence_tb.sv

│ │ │ │ └── sequencer.sv

│ │ │ ├── info/

│ │ │ │ ├── agent.sv

│ │ │ │ ├── config.sv

│ │ │ │ ├── monitor.sv

│ │ │ │ ├── pkg.sv

│ │ │ │ ├── sequence.sv

│ │ │ │ ├── sequence_item.sv

│ │ │ │ └── sequencer.sv

│ │ │ ├── tests/

│ │ │ │ ├── pkg.sv

│ │ │ │ ├── sequence.sv

│ │ │ │ ├── speed.sv

│ │ │ │ └── test.sv

│ │ │ ├── dut.sv

│ │ │ ├── property.sv

│ │ │ └── testbench.sv

│ │ ├── Modules.tcl

│ │ ├── signals.fdo

│ │ ├── signals_sig.fdo

│ │ ├── top_level.fdo

│ │ └── ver_settings.py

│ ├── fp_auxiliary_gen.vhd

│ ├── fp_block_vld.vhd

│ ├── fp_bs_calc.vhd

│ ├── fp_bs_ctrl.vhd

│ ├── fp_bs_per_packet.vhd

│ ├── fp_channel.vhd

│ ├── fp_channel_demux.vhd

│ ├── fp_data_sel.vhd

│ ├── fp_dropper.vhd

│ ├── fp_fifo_ctrl.vhd

│ ├── fp_merger.vhd

│ ├── fp_meta_concatenate.vhd

│ ├── fp_mux_ctrl.vhd

│ ├── fp_ptr_ctrl.vhd

│ ├── fp_spkt_lng.vhd

│ ├── fp_timeout_ext.vhd

│ ├── fp_tmp_reg.vhd

│ ├── fp_ver_module.vhd

│ └── frame_packer.vhd

