
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

EFFICIENT HANDLING OF BOOLEAN FUNCTIONS
EFEKTIVNÍ PRÁCE S BOOLEOVSKÝMI FUNKCEMI

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. JÁN MAŤUFKA
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2025

Institut: Department of Intelligent Systems (DITS)

Student: Maťufka Ján, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Mathematical Methods

Category: Theoretical Computer Science

Academic year: 2024/25

Assignment:

1. Study the current state of the art in the area of compact representation of Boolean functions. Focus,
in particular, on binary decision diagrams (BDDs) [1] and their extensions, such as zero-suppressed
decision diagrams (ZDDs) [2], tagged BDDs (TBDDs) [3], chain-reduced BDDs and ZDDs
(CBDDs/CZDDs) [4], and BDDs with edge-specified reductions (ESRBDDs) [5].

2. Study the work [6], which introduces the ABDD data structure: BDDs parameterized with reductions
and their canonic form.

3. Design an algorithm for efficient execution of Boolean operations over ABDDs.
4. Implement the designed algorithm and compare to algorithms in [1-5].
5. Discuss the achived results and propose extensions.

Literature:
[1] Randal E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Computers
35(8): 677-691 (1986)
[2] Shin-ichi Minato: Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. DAC 1993:
272-277
[3] Tom van Dijk, Robert Wille, Robert Meolic: Tagged BDDs: Combining reduction rules from different
decision diagram types. FMCAD 2017: 108-115
[4] Randal E. Bryant: Chain Reduction for Binary and Zero-Suppressed Decision Diagrams. J. Autom.
Reason. 64(7): 1361-1391 (2020)
[5] Junaid Babar, Chuan Jiang, Gianfranco Ciardo, Andrew S. Miner: Binary Decision Diagrams with Edge-
Specified Reductions. TACAS (2) 2019: 303-318
[6] J. Maťufka. New Techniques for Compact Representation of Boolean Functions. BSc thesis. FIT BUT,
Brno. 2023.

Requirements for the semestral defence:
First two items of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Lengál Ondřej, Ing., Ph.D.

Head of Department: Kočí Radek, Ing., Ph.D.

Beginning of work: 1.11.2024

Submission deadline: 21.5.2025

Approval date: 31.10.2024

Master's Thesis Assignment
165012

Efficient Handling of Boolean FunctionsTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
Binary decision diagrams (BDDs) are an important data structure in model checking, al-
lowing efficient representation of Boolean functions. When working with BDDs, efficient
manipulation of their structure is also often required. One of the most important functions
on BDDs is Apply. Apply takes two BDDs representing Boolean functions, a Boolean op-
erator, and produces a BDD representing their combined semantics. The main goal of this
work is to develop an algorithmic framework for the Apply function operating on binary
decision diagrams with reduction rules based on tree automata (ABDDs). The algorithm
works such that no unnecessary unfolding of the reduced structure is done. The complexity
of the algorithm is not dependent on the number of variables but on the initial graph sizes
of the two input ABDDs.

Abstrakt
Binárne rozhodovacie diagramy (BDD) sú dôležitou dátovou štruktúrou v model checkingu,
umožňujúcou efektívnu reprezentáciu Booleovských funkcií. Pri práci s BDD sa často
vyžaduje aj efektívna manipulácia s ich štruktúrou. Jednou z najdôležitejších operácií
pre manipuláciu BDD je Apply. Apply vezme na vstup 2 BDD reprezentujúce Booleovské
funkcie a Booleovský operátor, a vytvorí BDD reprezentujúci ich kombinovanú sémantiku.
Hlavným cieľom tejto práce je vytvoriť algoritmický rámec pre funkciu Apply pracujúcu
s binárnymi rozhodovacími diagramami s redukčnými pravidlami založenými na stromových
automatoch (ABDD). Algoritmus funguje tak, aby nebolo potrebné nadbytočne rozbaľovať
redukované štruktúry. Zložitosť algoritmu tým pádom nie je závislá na počte premenných,
ale na veľkostiach grafov vstupných dvoch ABDD.

Keywords
Binary decision diagram, Tree automaton, Apply.

Kľúčové slová
Binárny rozhodovací diagram, Stromový automat, Apply.

Reference
MAŤUFKA, Ján. Efficient Handling of Boolean Functions. Brno, 2025. Master’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Ondřej
Lengál, Ph.D.

Rozšírený abstrakt
Binárne rozhodovacie diagramy (BDD) sú známou dátovou štruktúrou (orientovaný acyk-
lický graf s koreňovým vrcholom) na efektívnu reprezentáciu Booleovských funkcií. Využí-
vajú sa najmä vo formálnej verifikácii, model checkingu, návrhu digitálnych obvodov.
V praktických aplikáciách sa často vyžaduje efektívna manipulácia s BDD, najmä funk-
cia Apply, ktorá skombinuje dva BDD reprezentujúce Booleovské funkcie 𝑓, 𝑔 pomocou
Booleovského operátora ⊙, a vytvorí BDD reprezentujúce funkciu 𝑓 ⊙ 𝑔.

Funkcia Apply je algoritmus, ktorý rekurzívne prechádza oba vstupné BDD naraz,
pričom “zarovnáva” ich štruktúry (umelým vkladaním vrcholov s konkrétnymi premennými,
keďže je možné kombinovať len vrcholy s rovnakými premennými). Výsledný algoritmus
má asymptotickú zložitosť, ktorá je súčinom veľkostí vstupných grafov, čo je dosiahnuté
použitím techník ako memoizácia, dynamické programovanie, a skrátené vyhodnocovanie
Booleovských výrazov.

Pre rôzne špecifické prípady sú BDD neefektívne, a preto za posledných 30 rokov vzniklo
viacero modifikácií BDD, ktoré využívajú rôzne spôsoby redukcie. Jedným z najnovších
prístupov v oblasti skúmania rôznych modifikácií BDD sú binárne rozhodovacie diagramy
založené na automatoch (ABDD). ABDD používajú robustný prístup pre reprezentáciu
redukčných pravidel, založený na stromových automatoch, ktorý umožňuje vytvárať vlastné
redukčné pravidlá, prípadne meniť poradie, v akom sa budú uplatňovať. Každé pravidlo
reprezentované stromovým automatom je potom schopné pokryť istý typ opakujúcich sa
vzorov (podstromov v jazyku daného automatu).

Hoci existujú algoritmy, ktoré z obyčajného BDD získajú kanonickú podobu ABDD
(kanonickosť v tomto kontexte znamená, že každá Booleovská funkcia je reprezentovaná
práve jedným ABDD), zatiaľ nebol popísaný efektívny spôsob, ako nad ABDD vykonať
Apply. Súčasné riešenie vyžaduje rozbalenie redukčných pravidiel do ich automatových
štruktúr a následné rozvinutie slučiek, čo spôsobí exponenciálny nárast veľkosti štruktúry.

Cieľom tejto práce je implementovať efektívnejší spôsob vykonávania Apply nad ABDD,
podobný ostatným BDD modelom. Zložitosť algoritmu nesmie byť závislá na počte pre-
menných, ale iba na veľkostiach vstupov. Algoritmus musí byť schopný zlúčiť redukované
hrany v ABDD (na základe daného operátora ⊙), a to tak, aby nebolo nutné rozbaľovať
ich sémantiku. Ďalej musí využívať rôzne optimalizačné techniky (memoizácia, dynam-
ické programovanie, skoré vyhodnocovanie Booleovských výrazov), aby sa dosiahla žiadaná
efektivita.

Kombinovanie redukčných pravidiel podľa Booleovského operátora sa dá vykonávať
s použitím automatového produktu a špecifickým vytváraním koncových hrán na základe
sémantiky operátora. Keďže stromových automatov reprezentujúcich redukcie je v ABDD
konečný počet, je možné si dopredu predpočítať všetky produkty rôznych kombinácií au-
tomatov a operátorov, so všetkými potrebnými informáciami tak, aby počas algoritmu sa
dalo okamžite zistiť, ako bude vyzerať skombinovaná hrana (teda redukčné pravidlo danej
hrany a vrcholy, ktoré daná hrana spája).

Ďalším dôležitým faktorom je popísanie spôsobu, akým sa synchronizuje rekurzívny
prechod algoritmu Apply. Inak povedané, ako redukované hrany ABDD možno rozdeliť
umelým vložením vrchola s konkrétnou premennou tak, aby bolo možné synchronizovane
pokračovať v algoritme ďalej. Tento proces materializácie vrcholov je navrhnutý tak, aby sa
rozdelením hrany nenarušila jej sémantika. Podobne aj tu je len obmedzený počet spôsobov,
akým bude vyzerať podštruktúra ABDD, ktorá vznikne rozseknutím redukovanej hrany za
rôznych okolností. Preto je možné si všetky tieto situácie dopredu predpočítať a v prípade

potreby je možné ihneď vybrať správnu podštruktúru, ktorou sa upraví vstup, čím sa umožní
synchronizovaný prechod oboma vstupnými grafmi.

Jednou nevýhodou algoritmu je, že jeho výsledok nemusí byť kanonický, čím sa vyžaduje
následné použitie kanonizačných algoritmov. Momentálne nie je jasné, ako by bolo možné
systematicky kontrolovať a redukovať novovzniknuté hrany a uzly, ak by nejakým spôsobom
narušovali kanonicitu.

Vykonané experimenty potvrdzujú výsledky z pôvodnej práce, použili sa rovnaké testo-
vacie vstupy, iba v rôznych štádiách konštrukcie (počas konštrukcie daných vstupov sa
opakovane používa Apply). Toto simuluje bežné aplikácie, v ktorých sa s BDD opakovane
manipuluje.

ABDD dosahujú v priemere 10-20 % menšie grafy ako iné modely. V teórii by to malo
znamenať, že čím menšie grafy sa dajú reprezentovať pomocou ABDD, tým efektívnejší by
mal byť Apply v porovnaní s inými modelmi, keďže asymptotická zložitosť Apply je lineárne
závislá od veľkosti vstupov.

Hľadaním iných opakujúcich sa vzorov a pridávaním nových redukčných pravidiel sa
efektivita ABDD reprezentácie, a tým pádom aj efektivita Apply dá zvyšovať, čo poukazuje
na potenciál tohto prístupu.

Efficient Handling of Boolean Functions

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author un-
der the supervision of Ing. Ondřej Lengál, Ph.D. and that all literary sources, publications,
and other sources were properly listed and cited.

. .
Ján Maťufka
May 21, 2025

Acknowledgements
I would like to thank my supervisor Ing. Ondřej Lengál, Ph.D. for his guidance, patience,
help and ideas while working on this project. I am deeply grateful to my parents for their
endless love, patience and support. Without their sacrifices and encouragement, this work
would not have been possible. I hope I can use the knowledge and experience gained during
this academic journey to make them proud.

Contents

1 Introduction 2

2 Binary Decision Diagrams 3
2.1 Boolean functions . 3
2.2 Representing Boolean functions as decision trees 6
2.3 Variable ordering matters . 7
2.4 Reducing the spatial complexity . 8
2.5 Challenges with efficient implementations of BDDs 11
2.6 Zero-suppressed binary decision diagrams 12
2.7 Tagged binary decision diagrams . 14
2.8 Binary decision diagrams with chain reductions 15
2.9 Binary decision diagrams with edge-specified reductions 16

3 Manipulating Binary Decision Diagrams — Apply 19
3.1 Important operations on binary decision diagrams 19
3.2 Basic overview of Apply algorithm in BDDs 22
3.3 Apply in modifications of BDDs . 24

4 Automata-based Binary Decision Diagrams — ABDDs 27
4.1 Tree automata preliminaries . 27
4.2 ABDD preliminaries . 29
4.3 ABDD canonization . 31
4.4 Further remarks . 33

5 ABDD Apply 35
5.1 Applying Boolean operations on reduced edges 37
5.2 Synchronizing variables during the recursive descent 39
5.3 Additional optimizations . 43
5.4 Complete algorithm . 45

6 Experimental Results 49
6.1 Node count comparison . 50
6.2 Examining the growth of progressive Apply usage 51

7 Conclusion 54
7.1 Future work . 54

Bibliography 56

1

Chapter 1

Introduction

Binary decision diagrams (BDDs) are extensively used in computer science as an efficient
way to represent Boolean functions. They have a wide variety of uses in formal verification,
model checking, computer-aided design (CAD), and other areas of mathematics and com-
puter science. For practical purposes, efficient manipulation and canonicity are required by
any model that tries to represent Boolean functions. Canonicity for BDDs means that there
only exists one BDD that can represent a given Boolean function. This is often enforced
by specifying an algorithm that tries to reduce the BDD structure to its minimal form.

However, enforcing canonicity becomes a challenge when trying to efficiently implement
other operations that manipulate BDD structures. One such operation, Apply, takes two
BDDs representing Boolean functions 𝑓, 𝑔, a binary logical operator ⊙, and returns a BDD
representing 𝑓 ⊙ 𝑔. Apply is optimized so that it does not have to expand the reduced
structure if not necessary.

A big area of BDD research focuses on utilizing special reduction rules to reduce the
memory complexity of the graph representations. One of the recent attempts [24] uses
reductions that label edges of the BDD graph, each reduction representing a tree automaton
that accepts trees that represent some reducible pattern. This model is called Automata-
based binary decision diagrams (ABDDs). ABDDs suffer from one limitation and that is
that the inefficiency of Apply. The initial proposal required that the reduced structure
is unfolded, the loops left in the unfolded structure unwound (so essentially turning the
decision diagram into a binary tree), and after that the operator is performed, which then
allows to reduce the resulting structure.

The goal of this work is to implement a more efficient Apply algorithm on ABDDs that
does not require unwinding of the loops. Instead, the algorithm should utilize reduction
rule merging and all possible optimization techniques (memoization, early evaluation, etc.)
to perform this more efficiently. The complexity of the algorithm should not be dependent
on the number of variables (as is the case with the loop unwinding version), but on the
graph sizes of the two input operands.

Binary decision diagrams (BDDs) are introduced in Chapter 2, along with their modifi-
cations relevant to this work. In Chapter 3, the Apply algorithm is explained, its implemen-
tation, optimization techniques, and its modifications in other BDD models. All relevant
theoretical foundations of ABDDs, tree automata, and a description of ABDD canonization
are given in Chapter 4. Chapter 5 focuses on the implementation of Apply on ABDDs (and
the intuition behind it), all techniques used to make the algorithm work efficiently within
the expected bounds. Finally, Chapter 6 overviews the experimental results and highlights
the strengths and weaknesses of ABDDs.

2

Chapter 2

Binary Decision Diagrams

This chapter serves as an introduction to the concept of binary decision diagrams [9] (BDDs,
singular form: BDD), how they look like, how they work, and how they relate to Boolean
functions. Along with how to obtain a canonic BDD representation of a Boolean func-
tion, the chapter focuses on practical applications of BDDs, while mentioning challenges,
limitations, and other areas of interest concerning BDDs.

The main portion of this chapter introduces the reduction techniques employed in the
state-of-the-art models that modify or expand upon the standard BDDs in order to reduce
the spatial complexity (or improve some other aspect of BDDs) – these models include
Zero-suppressed BDDs [25], Tagged BDDs [34], Chain-reduced BDDs [8], BDDs with edge-
specified reductions [4] (and their counterpart utilizing complemented edges [3]).

Understanding the inner workings and reductions of BDD-based representations is key
to understanding the motivation behind the goal of this thesis and the main idea behind
the approach used to achieve it.

2.1 Boolean functions
A key concept in discrete mathematics, Boolean functions have been a major subject of
study since the middle of 19th century, when George Boole (after whom they are named)
laid the foundations of mathematics in logic.

A Boolean function is any function whose arguments, as well as the function itself, as-
sume values from a two-element set (usually {0, 1}). Formally speaking, a Boolean function
𝑓 has the following signature: 𝑓 : {0, 1}𝑛 → {0, 1}, where 𝑛 ∈ N [7]. There are multiple
ways to represent (specify/define) a Boolean function (see Figure 2.1):

• Truth tables – systematically writing down every possible assignment of truth values
to variables along with the resulting truth value of the specific assignment in a table
format. Note that the number of rows of the truth table grows exponentially with
the number of variables.

• Propositional logic formulae/expressions – assigning truth values to variables and
evaluating the expression based on the semantics of the logical connectives (the logical
connectives themselves are simple unary/binary Boolean functions).

• Combinational circuits – basically a graphical way to represent a propositional formu-
lae, where input signals correspond to truth values assigned to variables and simple
logic gates correspond to logical connectives (in this context, instead of talking about

3

true/false values, low/high is usually used since it more closely relates to the voltages
going through the circuit).

• Karnaugh maps – a grid-like visual way of representing the truth table of Boolean
functions (usually best suited for functions of two to four variables), such that variable
assignments that differ in one variable’s truth value are next to each other in the grid
(Gray’s code). Karnaugh maps (or K-maps) are used to simplify Boolean expressions
while designing digital circuits (so that they consist of less logic gates).

• 𝑁 -dimensional cubes – every vertex of the 𝑁 -dimensional cube represents one variable
assignment. Similarly to K-maps, vertices representing “neighboring” assignments
share an edge on the 𝑁 -dimensional cube. In a similar fashion, cube’s planes of
higher dimensions will have less variables set to the same value. Vertices of a 𝑁 − 1
dimensional plane of the cube will have exactly one variable set to a specific truth
value. [7]

𝑥1 𝑥2 𝑥3 𝑓1
a: 0 0 0 0
b: 0 0 1 1
c: 0 1 0 1
d: 0 1 1 0
e: 1 0 0 0
f: 1 0 1 0
g: 1 1 0 1
h: 1 1 1 0

(a) Truth table of Boolean function 𝑓1

e

h

b

g

c

d

f

a

(b) 𝑓1 as an N-dimensional cube

0 1 0 1

0 0 0 1

a b d c

ghfe

x3

x2

x1

(c) 𝑓1 as a Karnaugh map

x1

x2

x3

f

(d) Combinational circuit representing 𝑓1

Figure 2.1: Boolean function 𝑓1(𝑥1, 𝑥2, 𝑥3) = (𝑥2 ∧ ¬𝑥3) ∨ (¬𝑥1 ∧ ¬𝑥2 ∧ 𝑥3) represented
in multiple ways. Note how the adjacent vertices of the N-dimensional cube and adjacent
cells of a Karnaugh map (even adjacent through wrap-around) differ in just one variable
value. This demonstrates the principle of Boolean adjacency – Boolean terms (assignment
of truth values to variables) are adjacent if they differ in exactly one value. Also notice
how the number of propositional connectives is the same as the number of logic gates in
the combinational circuit representation.

An important thing to note with regards to Boolean functions is that for any Boolean
function with 𝑛 inputs, there are 2𝑛 different assignments, each of which can lead to one of
two different truth values. Thus, for 𝑛 Boolean variables, there are 22

𝑛 different Boolean
functions. So there are four unary Boolean functions (always 0, always 1, identity, negation),
16 binary Boolean functions, etc.

4

Propositional logic

Boolean functions provide a mathematical framework for evaluating the truth values of
propositional logic formulae (or expressions). The syntax of propositional logic consists of
the following:

• The set of variables (which, upon evaluation, can only obtain the truth values 0 and
1).

• The truth values 0 and 1 (can be considered nullary functions – constants).

• The logical connectives:

– Logical conjunction ∧ – alternatively: AND, &, ·.
– Logical disjunction ∨ – alternatively: OR, |, +.
– Logical negation ¬ – alternatively NOT, − or !, also represented by a line over

an expression, like 𝑥+ 𝑦. While the other mentioned connectives are binary
Boolean functions, logical negation is one of four unary Boolean functions (along
with logical true, logical false, logical identity).

– Logical implication → (conditional) and logical equivalence ↔ (bi-conditional).
– Other logical connectives, like exclusive or ⊻ (XOR, ⊕), Sheffer stroke ↑ (NAND),

Pierce arrow ↓ (NOR).

• The parentheses are used when trying to enforce a priority order between connectives –
by default, the logical connective precedence is the following: negation > conjunction
> disjunction > conditional > bi-conditional.

A set of logical connectives is functionally complete, when it is able to express all possible
truth tables by combining members of the set into a Boolean expression. Notable function-
ally complete sets are {∨,¬} and {∧,¬} (they can be interchanged thanks to De Morgan
laws), singleton sets {↑} and {↓}. In practice, this means that if a set of connectives is able
to express negation and either of conjunction/disjunction, then by using a combination of
the connectives from the set, one can represent any Boolean function.

The most utilized functionally complete set of logical connectives in practice is {¬,∨,∧}.
This set of connectives is used in all normal forms of propositional formulae. A propositional
logic formula is in negation normal form (NNF) if, firstly, the only connectives used are
¬,∨,∧ (and nullary functions 0, 1), and secondly, negation connective is only used right in
front of variables (i.e. in the innermost positions). A literal is defined as a Boolean variable
or the negation of a Boolean variable. Negation normal form, can be alternatively defined
as conjunction and disjunction of literals.

Disjunctive normal form, also called sum of products, OR of ANDs is defined by this
structure: ⋁︁

𝑖

⋀︁
𝑗

𝐿𝑖𝑗 where 𝐿𝑖𝑗 is a literal, i.e. either a variable or its negation.

So, similarly to NNF, the only allowed connectives are ¬,∨,∧, and negation is only
allowed directly in front of variables. But, additionally, the whole formula is one disjunction
of clauses, where clauses are defined as conjunctions of literals.

5

The last important normal form is the conjunctive normal form (CNF), also called
a product of sums, AND of ORs. The propositional logic formula is in CNF when it
adheres to the following structure:⋀︁

𝑖

⋁︁
𝑗

𝐿𝑖𝑗 where 𝐿𝑖𝑗 is a literal.

Essentially, a formula in CNF is a conjunction of clauses, each clause is a disjunction of
literals.

Most practical applications (SAT solvers, automated theorem provers) work with for-
mulae in CNF because of the underlying heuristics of these tools. Search strategies, back-
tracking, efficient conflict detection, propagation, invalid branch pruning were all designed
with the CNF structure in mind [15]. It is also more natural to represent constraints of the
analyzed system as a list of what has to hold at all times. DNF focuses on enumerating so-
lutions, which, even though is more natural for human understanding, leads to exponential
growth and impracticality in most scenarios.

2.2 Representing Boolean functions as decision trees
On top of the earlier mentioned ways to specify or represent Boolean functions, there is also
another, very intuitive way – decision trees. Specifically, in the case of Boolean functions,
binary decision trees. Decision trees are used in many areas of computer science, like
statistics, especially machine learning – practical algorithms such as ID3, C4.5, and CART,
state space search in AI development, etc. [19]

Given a truth table, binary decision trees directly map to the way machines would think
about evaluating the result of a Boolean function (given the specific assignment of truth
values to each variable/argument of the function). Top-down decision tree traversal reflects
a series of questions about the truth values of variables, upon arriving at the final result
– a truth value in some leaf node. The non-leaf nodes of the tree select which branch to
send the decision process to, based on the truth value of a particular variable represented
by that node. Obtaining the binary decision tree, given a truth table of a Boolean function
is depicted in Figure 2.2.

𝑥3𝑥4
00 01 11 10

𝑥
1
𝑥
2

00 0 1 0 1
01 1 0 1 1
11 1 0 1 0
10 0 1 1 1

(a) A K-map of function 𝑓2

x2

x3

x2

x3 x3x3

x1

x4 x4 x4 x4 x4x4 x4 x4

10 1 0 11 101 0 1 1 1 0 0 1

(b) Full binary decision tree of function 𝑓2

Figure 2.2: Boolean function represented as a decision tree. Dashed lines leading from
nodes down represent the truth value of the variable in the node being false. Solid lines
represent true.

Naturally, looking at some binary decision tree representing a Boolean function, it is
clear that at some point during the traversal, the function result is already determined,

6

regardless of which branches are chosen until leaf nodes are reached or that the branch
choice in some node is irrelevant. In the same manner, the decision tree can include nodes
that are identical, i.e., the decision process (or the rest of it) will proceed in identical way
upon reaching these nodes. These two redundancies are the main idea on which binary
decision diagrams (BDDs) are built and how they are able to compactly represent (without
any loss of semantics) Boolean functions.

The first notion of using decision diagrams as a means of effective representations of
Boolean functions came in 1959 by Lee [21]. Back then, they were called binary-decision
programs and Lee demonstrated their applications in designing switching circuits. The
main takeaway was that they are more efficient representations of Boolean functions, while
being harder to manipulate, as opposed to the algebraic forms of representation. Later,
in 1978, Akers [2] introduced the current notion of binary decision diagrams. However, no
formal basis or implementation details of BDDs were given. The paper only demonstrated
methods for deriving the diagrams and gave a few examples for some basic combinational
and sequential devices/circuits (including, for example, a k-carry look-ahead adder). It was
Bryant’s work in 1986 [9] that gave BDDs the structure and algorithmic framework it is
known for today. What follows is a deeper look into the key aspects of how binary decision
diagrams work.

2.3 Variable ordering matters
Very important aspect of BDDs that has not yet been mentioned here is the fact that one
Boolean function can be represented by multiple BDDs. In particular, choosing a different
order of variable evaluation leads to a different (fully expanded) binary decision tree – and
as such, upon applying reductions, a different binary decision tree. A poor variable order
can result in a significantly larger BDD, see Figure 2.3.

Choosing non-optimal variable order can significantly increase the resulting size of the
BDD, ranging from linear to exponential growth. Based on the number of variables 𝑛, the
upper bound for the number of nodes of the BDD is (2𝑛/𝑛)(2+𝜀)), where 𝜀 is an arbitrarily
small positive number. Even though there is an exponential dependency, most functions
are not that sensitive to variable ordering, i.e. the sizes of BDDs with the best and the
worst ordering differ by a factor converging to 1 exponentially fast. [22, 37]

Obtaining an optimal variable order for a given Boolean function, such that the result-
ing BDD size is minimal, is NP-hard, even when the function is already represented as
an ordered BDD [6].

Static reordering hopes to find the optimal variable order before the BDD is constructed.
There are published algorithms that find the optimal variable ordering for a general Boolean
function with 𝑛 variables, with the worst-case time complexity of 𝑂(𝑛23𝑛) [17]. More
practically, however, there are heuristic methods with much better time complexity de-
riving a BDD from specific Boolean function representation like circuits, CNF, or state
machines [10].

Dynamic reordering tries to minimize the size complexity on an already constructed
BDD. Introduced by Rudell [29], pairwise swapping of adjacent variables, while preserving
external references to the graph’s root vertices, thus not changing the semantics of the un-
derlying function, achieves a more compact (not necessarily optimal) BDD structure. Sifting
is another dynamic technique, and works by moving variables across potential positions in
the order. When trying to swap positions of variables 𝑥𝑖 and 𝑥𝑖+1 in the variable ordering,
for any occurrence of nodes with 𝑥𝑖 variable, sifting just swaps the nodes reached through

7

assigning 𝑥𝑖 = 1∧𝑥𝑖+1 = 0 and through 𝑥𝑖 = 0∧𝑥𝑖+1 = 1. Sifting is more computationally
expensive, but it contributes massively to improving memory performance.

Overall, dynamic reordering is essential in real-world applications, where variable inter-
dependencies and application-specific constraints sometimes make static optimization im-
possible. Achieving the best possible variable order while staying computationally feasible
still remains an important area of BDD research.

x3

x5

x1

x6

0 1

x2

x4

(a) Optimal variable order
𝑥1 < 𝑥2 < 𝑥3 < 𝑥4 < 𝑥5 < 𝑥6

x1

x2

x3

x4

x5

x6

x3

x5 x5 x5

x2 x2 x2

x4

10

(b) Non-optimal variable order
𝑥1 < 𝑥3 < 𝑥5 < 𝑥2 < 𝑥4 < 𝑥6

Figure 2.3: Comparison of (canonical) BDDs obtained from the same function
𝑓3 = (𝑥1 ∧ 𝑥2) ∨ (𝑥3 ∧ 𝑥4) ∨ (𝑥5 ∧ 𝑥6), but using a different variable order. Since the
variable order is fixed, there is no need to use arrows, because the direction of edges can
be inferred, from node 𝑣 to node 𝑣′, such that 𝑣𝑎𝑟(𝑣) < 𝑣𝑎𝑟(𝑣′). Figure adapted from [9].

2.4 Reducing the spatial complexity
Formally, BDD over an ordered set of variables X = {𝑥1, . . . , 𝑥𝑛} is a directed acyclic
graph (DAG) 𝐺 = (𝑉,𝐸), with one root vertex 𝑟𝑣 ∈ 𝑉 (with no incoming edges, i.e.
∄𝑣 ∈ 𝑉 : (𝑣, 𝑟𝑣) ∈ 𝐸) and two leaf vertices (no outgoing edges) – terminals 0 ∈ 𝑉 and 1 ∈ 𝑉
(denoted in bold). Vertices are sometimes referred to as nodes and terminal vertices are
referred to as terminal nodes or leaf nodes. The terms non-terminal/internal/non-leaf are
also used interchangeably. Every node of the BDD represents a separate Boolean function,
evaluation of which starts at the root node. Terminal nodes represent trivial (nullary)
Boolean functions 0 and 1. There are three functions associated with each non-leaf node of
a BDD (i.e., the domain of the function is the set of nodes of the BDD):

• 𝑣𝑎𝑟(𝑣) : 𝑉 → X returns a variable associated with it.

• 𝑙𝑜𝑤(𝑣) : 𝑉 → 𝑉 ∪{⊥} represents the target node of the “low” outgoing edge of a node
𝑣. 𝑙𝑜𝑤(𝑣) returns a BDD that is reached when 𝑣 is evaluated is false. Alternatively,
it can be thought of as a subgraph rooted in the low child node of 𝑣.

8

• ℎ𝑖𝑔ℎ(𝑣) : 𝑉 → 𝑉 ∪ {⊥} is similar to function 𝑙𝑜𝑤, but for the “high” outgoing edge
(evaluating 𝑣 as true). Note that 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ return ⊥ for leaf nodes.

Considering that BDDs assume a fixed variable order, the following must hold for any
non-leaf node 𝑣:

• if 𝑙𝑜𝑤(𝑣) is not a leaf, then 𝑣𝑎𝑟(𝑣) < 𝑣𝑎𝑟(𝑙𝑜𝑤(𝑣)),

• if ℎ𝑖𝑔ℎ(𝑣) is not a leaf, then 𝑣𝑎𝑟(𝑣) < 𝑣𝑎𝑟(ℎ𝑖𝑔ℎ(𝑢)).

Essentially, 𝑣𝑎𝑟 gives each node an index that refers to the position of the variable (which
the node’s decision is based upon) in the given order. The restriction above means, that
there is no backtracking or repeating in the variable order on all root-leaf paths of the BDD.
It does not necessarily mean that every variable must appear on a given path. This allows
BDD structure to sometimes “skip” variables in cases where the resulting truth value is not
affected by that particular variable (in a given branch of the BDD). For nodes representing
terminals 0 and 1 (leaf nodes), 𝑣𝑎𝑟() function is not defined. Instead, 𝑣𝑎𝑙(𝑣) can be used to
get the truth value stored within that node (𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ functions in this case also have
no use).

BDDs with a fixed variable order are usually referred to as ordered binary decision
diagrams (OBDDs). Ordered binary decision diagrams in a canonical form (obtained by
applying reduction rules on the structure of the BDD until no more reduction is possible)
are usually referred to as reduced ordered binary decision diagrams (ROBDDs). Note
that canonicity inherently requires a fixed variable order. Canonical form is obtained by
applying reduction rules in a systematic way, until no rules are applicable. Generally, by
using systematic rule application and placing some structural restriction (patterns that
are not allowed), canonical form makes it so that for a given Boolean function, there is
exactly one possible ROBDD representation. For brevity, in this thesis, BDDs will refer to
ROBDDs.

The biggest improvement of the BDDs is their compactness, which is achieved by these
reduction principles:

1. Merging terminal nodes. There is at most one leaf node with a given terminal value
(0,1).

2. Removing redundant nodes. There is no node 𝑣 such that 𝑙𝑜𝑤(𝑣) = ℎ𝑖𝑔ℎ(𝑣), i.e. any
node, whose low and high descendant are the same, is redundant.

3. Merging duplicate nodes. There cannot be distinct non leaf nodes 𝑢, 𝑣 such that
𝑣𝑎𝑟(𝑢) = 𝑣𝑎𝑟(𝑣), ℎ𝑖𝑔ℎ(𝑢) = ℎ𝑖𝑔ℎ(𝑣) and 𝑙𝑜𝑤(𝑢) = 𝑙𝑜𝑤(𝑣), i.e., any isomorphic sub-
graphs of a BDD should be merged together.

In the case of the third rule, it should be noted that isomorphic subgraphs refer to such
graphs 𝐺 and 𝐺′ that there exists a one-to-one function 𝑓 between the nodes of 𝐺 and
nodes of 𝐺′ such that for any 𝑓(𝑣) = 𝑣′ it holds that either:

• both 𝑣 and 𝑣′ are terminal nodes with the same value (𝑣𝑎𝑙(𝑣) = 𝑣𝑎𝑙(𝑣′)),

• or they are both non-terminal (non-leaf) nodes and 𝑣𝑎𝑟(𝑣) = 𝑣𝑎𝑟(𝑣′) ∧ 𝑙𝑜𝑤(𝑣) =
𝑙𝑜𝑤(𝑣′) ∧ ℎ𝑖𝑔ℎ(𝑣) = ℎ𝑖𝑔ℎ(𝑣′).

9

In a canonic form of a BDD, every node represents a different function. Duplicate nodes,
or isomorphic subgraphs, represent an identical Boolean function, thus invalidating this
property. Examples of the reducible patterns in a BDD structure are shown in Figure 2.4.
For general (or random) Boolean functions, merging duplicate nodes reduces the size of
BDDs better than removing redundant nodes [22].

Obtaining a reduced form of a BDD, which is also a canonic representation of a Boolean
formula, given the particular variable ordering, works by first merging the terminal nodes,
and then continually finding redundant and duplicate nodes and updating the BDD struc-
ture so that the semantics are not lost. For demonstration of the forbidden patterns and
how the reduction process works, see Figure 2.5, for demonstration of how to take care of
multiple references, see Figure 2.4.

r

t

n1 n2 n3
ea eb ec

(a) Redundant node

t

n1 n2 n3

ea eb ec

(b) After removal

d1 d2

ea eb

t1 t2

ec

n1 n2 n3 n4 n5 n6
ed ee ef

(c) Two duplicate nodes

d

ea eb

t1 t2

ec

n1 n2 n3 n4 n5 n6
ed ee ef

(d) Merged duplicate nodes

Figure 2.4: Demonstration of forbidden (reducible) patterns in a ROBDD. Nodes labeled
𝑡 or 𝑡𝑖 already represent reduced BDD subgraphs, nodes labeled 𝑛𝑖 can be subject to fur-
ther reductions based on the reduction algorithm’s bottom-up approach. Edges are (for
demonstration) labeled with 𝑒. Nodes labeled with 𝑑 have to have the same variable.

x2

x3

x2

x3 x3x3

x1

10 1 0 0 0 1 0

(a) Full binary decision tree

x2

x3

x2

x3 x3x3

x1

1 0

r dd

(b) After merging leaves

x2 x2

x3 x3

x1

1 0

(c) After reductions

Figure 2.5: BDD reduction process. Boolean function 𝑓1 from Figure 2.1, represented as
a full binary decision tree (left), then after merging leaf nodes (middle), and after applying
BDD reduction rules (right). In the middle picture, the redundant node is labeled 𝑟, and
the duplicate nodes (same variable and same low and high child nodes) are labeled 𝑑.

In case of removing redundant nodes (low and high edges lead to the same node), all
edges pointing to the redundant node need to be redirected to the descendant. In case of
merging duplicate nodes (which represent the same function), edges leading to the node
that will be removed also need to be redirected to its copy, preserving the integrity of the
function. Merging duplicate nodes (and removing redundant ones) works by inductively
building a mapping 𝑖𝑑 : 𝑉 → N (where 𝑉 is a set of nodes of the BDD) of each unique
node to an integer (unique integers for nodes in which unique subgraphs are rooted) in
a bottom-up approach.

10

If for a currently processed node 𝑣 it holds that 𝑖𝑑(𝑙𝑜𝑤(𝑣)) = 𝑖𝑑(ℎ𝑖𝑔ℎ(𝑣)), then 𝑣 is
redundant and 𝑖𝑑(𝑣) = 𝑖𝑑(𝑙𝑜𝑤(𝑣)) should be set. If there is some other node 𝑣′ with the
same variable as 𝑣 such that 𝑖𝑑(𝑙𝑜𝑤(𝑣)) = 𝑖𝑑(𝑙𝑜𝑤(𝑣′)) ∧ 𝑖𝑑(ℎ𝑖𝑔ℎ(𝑣)) = 𝑖𝑑(ℎ𝑖𝑔ℎ(𝑣′)), then
the subgraphs rooted at 𝑣, 𝑣′ are isomorphic and 𝑖𝑑(𝑣) = 𝑖𝑑(𝑣′) should be set.

2.5 Challenges with efficient implementations of BDDs
Symbolic model checking using BDDs has been a significant success in the area of advanced
system verification, however, scaling to larger systems is still a problem. Even though
modern computer architectures offer more memory, cores, and computing power, most
BDD libraries do not utilize these resources efficiently because their implementations run
on single-core [10]. The biggest bottleneck in efficient scaling is memory performance,
since depth-first traversal and standard hashing in BDD library implementations results in
poor memory locality, while improved locality implementations using breadth-first traversal
and memory packing are not yet widely used. Issues with potential parallelism in BDD
operations, like managing graph partitioning and communication overhead among nodes,
seem to have been efficiently dealt with in the queue-based system that distributes work
using tasks from the University of Twente [36] (which resulted in a parallel multi-terminal
BDD library Sylvan [35]).

BDDs outperform SAT solvers in tasks that require exhaustive solution representations
(counting solutions or variable quantification). In most applications, where only checking
whether or not a Boolean function is satisfiable, SAT solver top-down techniques (DPLL
algorithm, CDCL) perform better. Combining SAT solvers and BDDs could use the benefits
of both approaches for specific problem types. [10]

Representing non-Boolean domains using DDs

In many applications, decision diagrams can be utilized to represent functions with non-
Boolean domains (. In the following, assume the domain over which functions are evaluated
is 𝐾 (and the size of this domain is card(𝐾)). If the underlying decision diagram is a BDD,
the discrete domain will require a special encoding:

• Binary encoding maps variables to Boolean combinations (bit-vectors) using a min-
imal number of binary variables – this is the most memory efficient when the domain
size is a power of two (DDs variable domain size is 𝑛 · log2(card(𝐾))).

• Unary encoding uses one-hot encoding for variable values, practical for BDD model
that works well with sparse functions (see Section 2.6) but inefficient in classic BDDs
– this approach is less memory efficient, the larger the domain is (DDs variable count
is 𝑛 · card(𝐾)).

The other approaches that do not yield a BDD when representing generally discrete
domains are:

• Multi-terminal binary decision diagrams (MTBDDs) represent functions with non-
Boolean ranges, supporting algebraic operations. However, their size can grow ex-
ponentially due to large function images, limiting efficiency unless modularity in the
system reduces this growth.

11

• Multiway branching (𝑛-ary DDs) allows nodes to choose one of 𝑛 branches for its
𝑛-valued variable.

Decision diagrams can be also utilized to represent functions over unbounded domains.
Of course, one can use discretization of the continuous/unbounded domain and utilize the
above mentioned methods, but there are also special decision diagrams that can be used
instead.

The most popular representatives of unbounded domain decision diagram (in this case,
infinite domain) are difference decision diagrams (DDDs) [28]. Nodes in DDDs represent
predicates (e.g., 𝑥𝑖−𝑥𝑗 ≤ 𝑐), rather than Boolean variables. DDDs are heavily used in model
checking of timed automata. DDDs have to represent constraints on real-valued clocks and
must handle infeasible paths and redundant terms, which often requires exponential time
for path elimination.

The capabilities of DDDs can be expanded using variants like clock difference dia-
grams [20], which are used in verification of timed automata, and analyzing real-time sys-
tems (merging or combining related constraints to reduce redundancy and improve effi-
ciency) and linear decision diagrams [11] (designed to handle arbitrary linear constraints).

While mirroring SMT solvers by symbolically representing constraints across mathemat-
ical theories, these approaches still have troubles managing conflicts (or infeasible paths, or
contradictions).

2.6 Zero-suppressed binary decision diagrams
Zero-suppressed binary decision diagrams (ZBDDs) were one of the first modifications of
BDDs. First introduced by Minato in 1993 [25], they work exactly like BDDs, except they
differ in the reduction rule. The motivation for ZBDDs came from the fact that in many
applications, BDDs do not simply represent Boolean functions, but rather sets. Suppose
a set of 𝑛 objects, from which combinations are selected. Each combination can be repre-
sented as a binary vector (𝑎1, 𝑎2, . . . , 𝑎𝑛), where 𝑎𝑖 = 1 if the 𝑖-th object belongs to the set,
𝑎𝑖 = 0 otherwise. Then a combination set is the set of these binary vectors. Combination
sets can be also understood as subsets of the power set of 𝑛 objects. A combination set 𝑆
of binary vectors of length 𝑛 corresponds to a Boolean function 𝑓 of 𝑛 variables, such that:
𝑓(𝑥1, . . . , 𝑥𝑛) = 1⇐⇒ (𝑥1, . . . , 𝑥𝑛) ∈ 𝑆.

Such a Boolean function is called a characteristic function of the set of combinations.
The output value of the characteristic means whether a combination specified by the input
variables is included in the set or not. Solving combinatorial problems can be done through
manipulating combination sets using operations like union, intersection, and difference.
These set operations can be executed by logic operations on characteristic functions. When
manipulating sets in combinatorial problems, Minato noticed that BDDs are not so efficient.

All paths in the BDD from the root node to terminal 1 represent all combinations in the
set. When using BDDs to represent characteristic functions, combination set manipulation
can be done quite efficiently. However, BDDs depend on the number of input variables,
therefore the number of inputs has to be fixed before the BDD creation. In combination sets,
variables representing irrelevant items not appearing in any combination (default variables)
are regarded as zero when the characteristic function is true. Such variables cannot be
suppressed in BDDs and many useless nodes for irrelevant objects have to be introduced.
Node elimination is inefficient in dealing with such nodes. And so, ZBDDs were introduced.

12

In BDDs, for a redundant node 𝑛 it holds that 𝑙𝑜𝑤(𝑛) = ℎ𝑖𝑔ℎ(𝑛), the reduction rule for
redundant nodes in ZBDDs is changed to the following:

• Node 𝑣 should be eliminated when its high edge points to 0 (i.e. ℎ𝑖𝑔ℎ(𝑣) = 0). Edges
reaching the eliminated node 𝑣 are redirected to 𝑙𝑜𝑤(𝑣)

The rule about merging duplicate nodes (i.e. roots of isomorphic subtrees) still holds.
The rule specific for ZBDDs is assymetric, so there is no alternative for low-edge pointing
to 0. For a demonstration of when ZBDD representation of a Boolean function is more
effective than a BDD representation, see Figure 2.6.

𝑥3𝑥4
00 01 11 10

𝑥
1
𝑥
2

00 0 1 0 1
01 0 0 0 0
11 0 0 0 0
10 0 0 0 0

(a) 𝑓4 as a Karnaugh map

x4

x3
x4

x2
x1

10

(b) 𝑓4 as a BDD

x3

x4

10

(c) 𝑓4 as a ZBDD

Figure 2.6: Comparison of BDD and ZBDD representation for a characteristic function
𝑓4(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (¬𝑥1∧¬𝑥2∧𝑥3∧¬𝑥4)∨ (¬𝑥1∧¬𝑥2∧¬𝑥3∧𝑥4). Note the sparsity of the
function 𝑓4. The combination set represented by 𝑓4 is 𝑆 = {(0010), (0001)}. Alternatively
𝑆 can be written as 𝑆 = {𝑥3, 𝑥4}, where combination 𝑐 is written as a multiplication of
items included in 𝑐. Figures are adapted from [25].

For ZBDD representations to be effective, the Boolean functions have to be sufficiently
sparse. An experiment was conducted in [25], where the characteristic function represented
a combination set of 100 combinations, each of which contained exactly 𝑘 items from 100.
When 𝑘 was smaller, the ZBDDs were much more compact than BDDs. The effect was
weakening with the increasing 𝑘. Another advantage of ZBDDs is the fact that the number
of nodes from the root to the terminal node 1 is equal to the number of combinations in
the combination set.

So, ZBDDs are more effective than BDDs, when the following criteria are met:
1. There are many input variables.

2. Default variables are regarded as zero.

3. The function represents sets of “sparse” combinations.

4. The number of combinations is large (otherwise, storing combinations in a linked list
is better). [26]

Note that sets of sparse combinations are not the same as sparse sets of combinations.
Sparse combinations are bit-vectors with a low number of ones. Sparse sets have a low
number of vectors, which goes against the fourth criterion mentioned above. A good ex-
ample when to use a ZBDD is storing solutions to 𝑁 -queens problems. Since there are 𝑁2

cells and the combinations will have only 𝑁 elements set to true, the bigger the 𝑁 , the
more efficient the representation (compared to BDDs).

ZBDDs have found applications in many areas. For example, in data mining, ZBDDs
can be efficiently utilized in algorithms for mining frequent itemsets [27]. Another example
is in graph optimization problems [13], such as:

13

• Maximal cliques. Find all cliques of a graph that are not a proper subset of an-
other clique (finding a maximum cardinality clique is NP complete, finding all proper
maximum cliques is exponential).

• Minimum 𝛼-covering. Let 𝑋,𝑌 be two sets and 𝑅 ⊆ 𝑋 × 𝑌 .𝑌 ′ ⊆ 𝑌 covers 𝑋 ′ ⊆ 𝑋
when ∀𝑥 ∈ 𝑋 ′∃𝑦 ∈ 𝑌 ′ : 𝑥𝑅𝑦. The problem is defined as finding a minimum cardinality
set 𝑌 ′ ⊆ 𝑌 that covers at least a fraction 𝛼 of 𝑋, given the triple (𝑋,𝑌,𝑅).

• Maximum 𝑘-cover. Find 𝑘 elements of 𝑌 that cover as many elements of 𝑋 as possible,
given the triple (𝑋,𝑌,𝑅) (defined as above).

2.7 Tagged binary decision diagrams
Tagged binary decision diagrams (TBDDs) try to merge the reduction rules from BDDs and
ZBDDs into one framework. This approach, while being more complex, is more efficient [34].
So, in total, there are four reductions to be applied – merge all terminal nodes (0, 1), merge
duplicate nodes, remove nodes whose low and high edge point to the same node, remove
nodes whose high edge points to terminal 0 node.

Obtaining a canonical (reduced) form of a TBDD works by first merging terminals, then
merging duplicate nodes, then first applying BDD-specific elimination and then applying
ZBDD-specific elimination. The name “tagged” comes from the tags that are used on edges
between two adjacent nodes of a TBDD. Considering an edge connecting two adjacent nodes
𝑖→ 𝑘, variables 𝑥𝑖, 𝑥𝑘 labeling them and the variable order being such that 𝑥𝑖 < 𝑥𝑘:

• If the tag is a variable 𝑥𝑗 , such that 𝑥𝑖 < 𝑥𝑗 ≤ 𝑥𝑘, then:

– variables before the tag (∀𝑥𝑟 : 𝑥𝑖 < 𝑥𝑟 < 𝑥𝑗) were skipped based on the BDD-
specific rule (“don’t-care” variables),

– variables after the tag (∀𝑥𝑟 : 𝑥𝑗 ≤ 𝑥𝑟 < 𝑥𝑗) were skipped based on the ZBDD-
specific rule (“high-zero” variables).

• If the tag is labeled ⊥, then all remaining variables were skipped according to the
BDD-specific rule (“don’t-care” variables).

Every edge leading to a node (even root node and terminal nodes) is labeled with a tag.
Edges to internal nodes can only be labeled with a variable, such that its index in the order
is greater than source node’s and smaller or equal to the target node’s. Edges to leaves can
be labeled with a variable, or with the ⊥ tag. Intuitively, to only apply a BDD reduction
rule between two nodes labeled 𝑥𝑖, 𝑥𝑘 : 𝑥𝑖 < 𝑥𝑘, the tag is set to 𝑥𝑘. To only apply ZBDD
reduction rule between two nodes 𝑥𝑖, 𝑥𝑘 : 𝑥𝑖 < 𝑥𝑘, the tag is set to 𝑥𝑖+1. See Figure 2.7 for
a demonstration of TBDD semantics.

TBDDs offer a more compact representation than BDDs in many cases, as measured
in [34], and offer similarly high parallel scalability as BDD-based models from the past.
However, there are question marks surrounding the flexibility of operations on variable
order. Dynamic variable reordering algorithms, such as sifting, can be quite complex in the
case of TBDDs’ more complex reduction rules.

14

x1

x2

0 1
(a) BDD of 𝑓5

x2

x3

0 1
(b) ZBDD of 𝑓5

x2

0 1

⊥ ⊥

x1

(c) TBDD of 𝑓5

x4

x7x5

10

x1

x6x5

⊥ x7 ⊥ x9

(d) TBDD of 𝑓6

Figure 2.7: Demonstration of TBDDs. Figures 2.7a, 2.7b, and 2.7c depict the representa-
tions of a function 𝑓5(𝑥1, 𝑥2, 𝑥3) = ¬𝑥1 ∧ 𝑥2 using a BDD, ZBDD, and TBDD respectively.
Figure 2.7d depicts a TBDD of a function 𝑓6(𝑥1, . . . , 𝑥9) = (¬𝑥2∧¬𝑥3∧¬𝑥4∧𝑥5∧𝑥7∧¬𝑥8∧
¬𝑥9)∨ (¬𝑥2∧¬𝑥3∧𝑥4∧¬𝑥6∧¬𝑥7)∨ (¬𝑥2∧¬𝑥3∧𝑥4∧¬𝑥6∧𝑥7∧¬𝑥9), alternatively represented as
𝑆 = (*0001*000)∪ (*001*00**)∪ (*001*01*0), where conjoined items are sets of bit-vectors
with variables on positions with 0s and 1s are fixed as such, and variables on positions
with the star symbol can be assigned either 0 or 1, e.g. (0*) = {(01), (00)}. The Boolean
function can be obtained from the TBDD by looking at each path from the root to leaf 1
and assigning False to all variables that are skipped and equal to or greater than the tag.
Figures were adapted from [34].

2.8 Binary decision diagrams with chain reductions
Chain reductions allow BDDs and ZBDDs to take advantage of each other’s reduction rules.
So while similar to TBDDs in the essential idea, they differ in the fact that instead of the
edge-specified information about reductions, both these models store information about
their chain reductions in the nodes. [8]

There are two repeating patterns that chain reductions aim to eliminate: OR-chains
and DON’T-CARE-chains. In BDDs, a commonly occurring OR-chain consists of a series
of connected nodes, each of which has a low edge pointing to the next node in the series
and the high edge pointing to some common target of all the nodes in the chain. So OR-
chains are essentially a generalized chained version of the pattern ZBDDs initially aimed
to eliminate. In ZBDDs, a DON’T-CARE-chain consists of a series of nodes, whose both
low and high edge point to the next node in the chain.

• Chain-reduced ordered binary decision diagrams (CBDDs) are obtained from a reduced
BDD by chaining nodes from each OR-chain into one node.

• Chain-reduced zero-suppressed binary decision diagrams (CZDDs) are obtained from
a reduced ZBDD by chaining nodes from each DON’T-CARE-chain into one node.

The chain-reduced BDD (CBDD) of a function will be no larger than its BDD rep-
resentation, and at most three times the size of its CZDD representation. Extensions to
the standard algorithms for operating on BDDs and ZDDs enable them to operate on the
chain-reduced versions.

15

The semantics of chain nodes thus differ depending on which model is used. Chain
nodes are different from general nodes, and are specified by two variables. One variable
marks the start of the chain and the other marks its end.

In cases where CBDDs are less efficient than ZBDDs (and vice versa for CZDDs versus
BDDs), CZDD representation will be at most twice the size of its BDD representation,
while CBDD representation will be at most three times the size of its CZDD representation.
CBDD and CZDD cannot be larger than their non-chain-reduced variants. Chain reduction
can provide significant benefits in terms of both memory and execution time, as evaluated
on benchmarks representing word lists, combinatorial problems and digital circuits [8]. See
Figure 2.8 for demonstration of chain reductions.

xj-1

xj

t1

xi+1

xi

t2

...

OR-chain

xi

xi+1

xj-1

xj

t1 t2

...

DON’T-CARE-chain

xi:xj

t1 t2

Chain-reduction result

Figure 2.8: Generalized versions of OR-chains, found in BDDs, and DON’T-CARE-chains
found in ZBDDs. The image on the right is the reduced OR-chain (in CBDDs), while
also representing reduced DON’T-CARE-chain (in CZDDs) – the result would be the same
for same-length chains. Note that the chain node contains two variables. Figure adapted
from [8].

2.9 Binary decision diagrams with edge-specified reductions
Following the pattern of integrating multiple reduction rules into one framework, BDDs
with edge-specified reductions (ESRBDDs) [4] not only merge reduction rules of BDDs and
ZBDDs, they also introduce another rule, which mirrors the ZBDD-specific reduction rule,
as will be explained shortly. From the name itself it is clear that, similarly to TBDDs,
ESRBDDs use edges to specify reduction rules. Nodes themselves do not contain informa-
tion about reduction, as was the case with CBDDs/CZDDs. ESRBDDs are much easier to
understand than TBDDs. While tags in TBDDs hide information about two reductions at
once, each edge of an ESRBDD only specifies one reduction:

• S (short) – no reduction rule applied on the edge (the variables of source and target
should be right next to each other in the variable order).

• X (“don’t care”) – removed redundant nodes. Nodes missing between the source and
target of this edge have been removed using the BDD reduction rule.

• H0 (“zero-suppressed” rule) – removed zero-suppressed nodes. Nodes missing between
the source and target of this edge have been removed using the ZBDD reduction rule,
i.e. their high edge pointed to terminal 0.

16

• L0 (“one-suppressed” rule) – removed one-suppressed nodes. Nodes missing between
the source and target of this edge have been removed, as they were one-suppressed.
One-suppressed nodes are nodes whose low edge points to terminal zero.

An edge 𝑒 in an ESRBDD is a pair 𝑒 = (𝑒.𝑟𝑢𝑙𝑒, 𝑒.𝑛𝑜𝑑𝑒), where 𝑒.𝑟𝑢𝑙𝑒 ∈ {S, X, L0, H0} is
a reduction rule used on edge 𝑒 and 𝑒.𝑛𝑜𝑑𝑒 is the target node of the edge. An ESRBDD is
reduced if it contains no duplicates, no redundant, zero-suppressed, or one-suppressed nodes
and edge leading to terminal zero can only have rules from {S, X}. An important aspect of
ESRBDDs that differentiates them from models described earlier, is that the reduction rules
X, H0, L0 are not prioritized over each other (TBDDs and CBDDs first apply BDD reductions,
then ZBDD/chain reductions, CZDDs first apply ZBDD reductions, then remove DON’T-
CARE-chains using BDD reductions). In ESRBDDs, the reduction algorithm works using
a deterministic depth-first traversal of the graph structure and applies any of the X, H0, L0
rule, when it can, until there is no redundant, zero-suppressed, or one-suppressed node left.

Results [4] show that ESRBDDs are more efficient than CBDDs, CZBDDs, or TBDDs.
Along with H0 and L0 rules, H1 (high-one) and L1 (low-one) rules are stated as possible
extension to the ESRBDD model.

Adding complemented edges to ESRBDDs

One of the latest publications in the area of BDD research involves adding complemented
edges to ESRBDDs. BDDs with complemented edges and edge-specified reductions, or
CESRBDDs [3], offer the same advantages as ESRBDDs, but thanks to complemented
edges, for each Boolean function 𝑓 and its negation ¬𝑓 , represented by two distinct nodes
in the CESRBDD, one node does not have to be stored. So for a pair of nodes 𝑢, 𝑣 repre-
senting complementing Boolean functions, if 𝑢 is stored, then all edges leading to 𝑣 can be
redirected to 𝑢, with a complement bit set to one.

On top of adding complemented edges, CESRBDD also incorporate rules L1, H1 sug-
gested in [4]. The use of complement bits in BDDs was originally introduced by Akers
back in 1978 [2], so the idea itself is not new. Each edge in a CESRBDD is represented
by a triple 𝑒 = (𝑒.𝑟𝑢𝑙𝑒, 𝑒.𝑐𝑜𝑚𝑝, 𝑒.𝑛𝑜𝑑𝑒), where the differences from ESRBDDs are that
𝑒.𝑟𝑢𝑙𝑒 ∈ {S, X, L0, L1, H0, H1}, and 𝑒.𝑐𝑜𝑚𝑝 ∈ {0, 1} is the complement bit of the edge.

By definition, a CESRBDD is reduced, if:

• It contains no duplicates.

• No edge points to the terminal node 1. Thanks to complement bits, the terminal
node 1 is redundant, edges leading to 0 with complement bit set to 1 can be used
instead.

• For every non-terminal node 𝑝, the complement bit of its low edge is 0.

• For any edge (𝜌, 0,0), it holds that 𝜌 ∈ {X, L1, H1}. For any edge (𝜌, 1,0), it holds
that 𝜌 ∈ {X, L0, H0}. Also, rules L1, H1 are not used on edges originating from nodes
representing the last two variables. There are special reduction patterns that preserve
canonicity for nodes with variables of the last two levels, since there are multiple ways
to represent them using combinations of complement bits and different boxes. They
are described in detail in [3], but to put it simply, X is preferred over {H1, H0} and
those are preferred over {L0, L1}.

• There are no pattern nodes (redundant, high-zero, high-one, low-zero, low-one).

17

• There is no “𝑥1 and 𝑥2” node, i.e. a node at level 2, with the low edge = (X, 0,0),
and the high edge = (H1, 0,0).

The conditions for a reduced and canonic CESRBDDs are more complex than their
predecessors, but they make CESRBDDs very efficient. Since CESRBDDs in most ways
work exactly like ESRBDDs, there is no precedence between the reduction rules. This
makes it easier for users, since they do not have to set the order of importance based on
the specific application. Nodes of CESRBDDs are more compact than those in CBDDs,
CZDDs, and TBDDs (less information stored per node). CESRBDDs themselves also are
more compact than other models (less nodes required to represent functions), as shown by
experimental results in [3].

18

Chapter 3

Manipulating Binary Decision
Diagrams — Apply

The previous chapter did not go in depth into the important operations over BDDs, only
mentioned them. This chapter is going to provide an overview for definitions and imple-
mentations of the most important operations on Boolean functions (and their BDD rep-
resentations). Since the goal of the thesis is implementing the Apply operation, the main
focus of the description will be on that particular function – complexities, explanations,
different techniques of optimization.

3.1 Important operations on binary decision diagrams
A compact and canonic representation of a Boolean function is important, but not enough in
most applications. Usually it is important to be able to perform operations with Boolean
functions and manipulate them without loosing canonicity, while still maintaining good
performance. What follows are brief definitions with intuitive descriptions for all important
operations on Boolean functions. The BDD implementations provided are based on the
descriptions in [9].

Evaluation

Given a Boolean function 𝑓(𝑥1, . . . , 𝑥𝑛) and a vector of truth values a = (𝑎𝑖, . . . , 𝑎𝑛) where
each 𝑎𝑖 ∈ {0, 1}, the task is to return 𝑓 applied to a, or 𝑓(a) ∈ {0, 1}. Intuitively, this is
just a lookup in the truth table of a function.

Implementing evaluation on basic BDDs is straightforward. Given a vector of truth
values (the vector order conforms to the variable order) and a BDD, the algorithm just
traverses one path of the BDD. The next visited node 𝑣𝑛 is picked by the value of the
vector element corresponding to the index of the variable of the current node 𝑣𝑐. If the
entry is zero, 𝑣𝑛 = 𝑙𝑜𝑤(𝑣𝑐), if one, 𝑣𝑛 = ℎ𝑖𝑔ℎ(𝑣𝑐). This is repeated until a terminal node
𝑣𝑡 is reached, then 𝑣𝑎𝑙(𝑣𝑡) is returned. The upper bound time complexity for evaluation is
𝑂(𝑛) where 𝑛 is the number of variables.

19

Restriction

Given the Boolean function 𝑓 over a vector of Boolean variables (𝑥1, 𝑥2, . . . , 𝑥𝑛), the restric-
tion of 𝑓 where some 𝑥𝑖 is replaced by a truth value 𝑏, is the following Boolean function:

𝑓 |𝑥𝑖=𝑦(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑏, 𝑥𝑖+1, . . . , 𝑥𝑛) .

Note that there are two restrictions of function 𝑓 with respect to variable 𝑥𝑖 (for the two
truth values). These functions are called cofactors of 𝑓 with respect to 𝑥𝑖.

The BDD implementation of the restriction 𝑓 |𝑥𝑖=𝑏 works by traversing the graph struc-
ture, finding edges pointing to such nodes 𝑣 where 𝑣𝑎𝑟(𝑣) = 𝑥𝑖 and redirecting them to
the node 𝑣′ such that 𝑣′ = 𝑙𝑜𝑤(𝑣) ⇐⇒ 𝑏 = 0 ∧ 𝑣′ = ℎ𝑖𝑔ℎ(𝑣) ⇐⇒ 𝑏 = 1 holds. Since
references to nodes with the restricted variable can be multiple and anywhere in the graph
structure, this algorithm works in 𝑂(|𝐺|) where |𝐺| is the number of nodes in BDD 𝐺. The
result of restriction can leave some redundant or duplicate nodes in the BDD structure (see
Table 3.1 and Figure 3.1 for demonstration), so calling reduction algorithm after restriction
is necessary to preserve canonicity.

Table 3.1: Truth table for function 𝑓1 and its restrict operations. The boxed values represent
relevant results for the cofactors.

𝑥1 𝑥2 𝑥3 𝑓1 𝑓1|𝑥1=0 𝑓1|𝑥1=1 𝑓1|𝑥2=0 𝑓1|𝑥2=1 𝑓1|𝑥3=0 𝑓1|𝑥3=1

0 0 0 0 0 0 0 1 0 1
0 0 1 1 1 0 1 0 0 1
0 1 0 1 1 1 0 1 1 0
0 1 1 0 0 0 1 0 1 0
1 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0
1 1 0 1 1 1 0 1 1 0
1 1 1 0 0 0 0 0 1 0

x2 x2

x3 x3

x1

1 0

(a) 𝑓1

x2

x3 x3

1 0

(b) 𝑓1|𝑥1=0

x2

x3

1 0

(c) 𝑓1|𝑥1=1

x3

x1

1 0

(d) 𝑓1|𝑥2=0

x3

x1

1 0

(e) 𝑓1|𝑥2=1

x2 x2

x1

1 0

(f) 𝑓1|𝑥3=0

x2 x2

x1

1 0

(g) 𝑓1|𝑥3=1

Figure 3.1: Demonstration of the restriction on a Boolean function. Function 𝑓1(𝑥1, 𝑥2, 𝑥3)
is the same as in Figure 2.1, and Table 3.1. (a) is its BDD representation followed by
intermediate results of restriction (b-g) before applying reduction algorithm. Notice how
(e) and (g) contain redundant nodes, and (f) has duplicate nodes (labeled 𝑥2).

Shannon expansion [31], an important concept of Boolean functions, can be defined
using restriction. Shannon expansion of a function w.r.t. variable 𝑥𝑖 is given by:

𝑓 = (𝑥𝑖 ∧ 𝑓 |𝑥𝑖=1) ∨ (¬𝑥𝑖 ∧ 𝑓 |𝑥𝑖=0)

20

Shannon expansion creates a new function by arbitrarily adding another variable to another
existing function. This will be important later for applying Boolean operators on two
Boolean functions, and for specifying operations like composition.

Composition

Composition is when an argument 𝑥𝑖 of a function 𝑓(𝑥1, . . . , 𝑥𝑛) is replaced by the result of
another function 𝑔(𝑥1, . . . , 𝑥𝑛), such a composition is then denoted 𝑓 |𝑥𝑖=𝑔. Mathematically:

𝑓 |𝑥𝑖=𝑔(𝑥1, . . . 𝑥𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑔(𝑥1, . . . , 𝑥𝑛), 𝑥𝑖+1, . . . , 𝑥𝑛)

Note that a function can even be composed into itself, 𝑓 |𝑥𝑖=𝑓 . There is an alternative
way of express the composition of some function, using Boolean operations and restriction.
This expression intuitively gives an indication as to how to perform composition on BDDs,
if procedures for Apply and restriction are given:

𝑓 |𝑥𝑖=𝑔 = (𝑔 ∧ 𝑓 |𝑥𝑖=1) ∨ (¬𝑔 ∧ 𝑓 |𝑥𝑖=0)

Table 3.2: Table of all compositions between Boolean function examples 𝑓1 and 𝑓2

𝑥1 𝑥2 𝑥3 𝑓1 𝑓2 𝑓1|𝑥1=𝑓2 𝑓1|𝑥2=𝑓2 𝑓1|𝑥3=𝑓2 𝑓2|𝑥1=𝑓1 𝑓2|𝑥2=𝑓1 𝑓2|𝑥3=𝑓1

0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 0 1 1 0
0 1 0 1 1 1 1 0 0 1 1
0 1 1 0 1 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 1 0
1 1 0 1 0 1 0 1 0 0 0
1 1 1 0 0 0 0 1 1 1 0

Satisfiability

Given a function 𝑓 , satisfiability checking procedure returns true if and only if there is
an assignment of truth values to variables such that the function returns true. In BDDs,
this question is basically the following: Is the terminal node 1 reachable? Additionally to
the yes/no answer, satisfy often requires a vector of truth values describing the specific
variable assignment for which the function is true.

In reduced BDDs, there is only one BDD for which the function is false and it only
consists of the terminal node 0. For every other node, the 1 terminal is reachable. Thus,
checking satisfiability (without requiring the assignment) in reduced BDDs can be done in
𝑂(1) by checking if the root node of the reduced BDD is not 0. If the assignment is also
required, then the algorithm works in 𝑂(𝑛) and employs simple backtracking. It is only
necessary to backtrack one step back to node 𝑣 and that is when the terminal 0 is reached.
Then the other branch of 𝑣 is picked for which it is guaranteed that 1 is reachable. Then
procedure keeps a vector of truth values during the traversal of the tree, editing it as needed
and filling it with zeros (for example) in case of edges that skip variables.

21

Apply

Given two Boolean functions 𝑓(𝑥1, . . . , 𝑥𝑛) and 𝑔(𝑥1, . . . , 𝑥𝑛) and a (binary) Boolean oper-
ator ⊙, return a function ℎ(𝑥1, . . . , 𝑥𝑛), such that ∀(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛:

ℎ(𝑥1, . . . , 𝑥𝑛) = (𝑓 ⊙ 𝑔)(𝑥1, . . . , 𝑥𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑛)⊙ 𝑔(𝑥1, . . . , 𝑥𝑛)

In the following, Apply is considered only with binary operators, since all other functions can
be represented using connectives from some functionally complete set. The only missing
ingredient is negation, which is unary, but in reduced BDDs, negation can be done in
constant time by simply switching terminal 0 and terminal 1 nodes. But even if it were
not, negation of 𝑓 can be obtained as a result of 𝑓 ⊕ 1. Another important use case of
Apply is testing for implication, i.e. checking if 𝑓1 ∧ ¬𝑓2 = 0.

3.2 Basic overview of Apply algorithm in BDDs
Given two Boolean functions 𝑓, 𝑔 and a binary Boolean operator ⊙, the algorithm starts
at the root nodes of the two BDDs representing 𝑓, 𝑔 and recursively descends down in
the graphs, while building a resulting BDD 𝐺 representing the result. The nodes of the
result are created at the branching points of the two input graphs. The control flow of the
algorithm is based on the recursion derived from the Shannon expansion, i.e.:

𝑓 ⊙ 𝑔 = (¬𝑥𝑖 ∧ (𝑓 |𝑥𝑖=0 ⊙ 𝑔|𝑥𝑖=0)) ∨ (𝑥𝑖 ∧ (𝑓 |𝑥𝑖=1 ⊙ 𝑔|𝑥𝑖=1))

Intuitively, the left disjunct represents recursing down on the low edges of inputs, the right
disjunct represents recursing down on the high edges of inputs. For the recursion to work
properly, the nodes of the both input BDDs have to represent the same variable.

Since reduced BDDs can have edges that skip variables, the equality of node variables is
not guaranteed during the simultaneous recursive descent. The following presents the three
different cases of what can happen when nodes 𝑢 from the first input BDD and 𝑣 from the
second input BDD are visited during the recursive Apply calls:

1. Both 𝑢 and 𝑣 are terminal nodes. Then the resulting BDD is the terminal node
𝑣𝑎𝑙(𝑢)⊙𝑣𝑎𝑙(𝑣). In the following two cases, suppose at least one of 𝑢, 𝑣 is not a terminal
node.

2. 𝑣𝑎𝑟(𝑢) = 𝑣𝑎𝑟(𝑣) = 𝑥𝑖. Then a node 𝑤 with variable 𝑥𝑖 is created, and two recursive
calls are invoked. Apply called on nodes 𝑙𝑜𝑤(𝑢), 𝑙𝑜𝑤(𝑣) will create a BDD rooted
in 𝑤𝐿, and this BDD will be pointed to by 𝑙𝑜𝑤(𝑤) = 𝑤𝐿. Apply called on nodes
ℎ𝑖𝑔ℎ(𝑢), ℎ𝑖𝑔ℎ(𝑣) creates 𝑤𝐻 , and ℎ𝑖𝑔ℎ(𝑤) = 𝑤𝐻 .

3. 𝑣𝑎𝑟(𝑢) < 𝑣𝑎𝑟(𝑣) ∨ 𝑣 ∈ {0,1} (one node has a greater variable or is a terminal, note
that the root node has the “smallest” variable). In that case, recursion only descends
with regards to the node 𝑢, the second argument node stays the same, until either
the variables are the same or both nodes represent terminal nodes, so that algorithm
can proceed as in the cases 1 or 2. This case is mirrored when the conditions for 𝑢, 𝑣
are reversed, i.e. 𝑣𝑎𝑟(𝑢) > 𝑣𝑎𝑟(𝑣) ∨ 𝑢 ∈ {0,1}.

In the third case, a new node is virtually introduced in the resulting BDD, this phe-
nomenon is sometimes called node materialization. Notably, the materialized node is not

22

introduced to any of the inputs, however, it can be a part of the result. Materialized nodes
are kept in the call stack of the recursion. If only the first two cases were applied, the re-
sulting BDD would be of the same size and shape as the two arguments (which also have to
be the same size for this to be possible), since the argument would be isomorphic (up to the
values in terminal nodes). Regardless of which cases are applied during the algorithm, the
resulting graph is not guaranteed to be reduced/canonical. That is why after the top-level
call (on the roots of the initial functions) of Apply is over, the reduction of the result has
to take place.

Optimizing the complexity with memoization

A naive implementation of Apply would have an exponential time complexity (wrt. the
number of variables 𝑛), since every Apply call generates two recursive calls (when one of
the nodes is a non-leaf). Using the following three modifications can reduce this complexity.

First, many times the Apply function is called on the same arguments. By utilizing
memoization of Apply calls, or call cache, the upper bound for complexity drops from
exponential wrt. the number of variables to 𝑂(|𝐺1| · |𝐺2|) where |𝐺1|, |𝐺2| are the number
of nodes in BDDs 𝐺1 and 𝐺2. The number of calls cannot be larger than the product of the
two sizes, because the theoretical worst case is that for every node 𝑢 from 𝐺1, Apply is called
with every node 𝑣 from 𝐺2. Memoization is used extensively in dynamic programming.

Second technique utilizes annihilation/absorption properties of 0 wrt. conjunction and
1 wrt. disjunction. If the function ⊙ is logical OR, then when one node is terminal 1, no
recursion or materialization is necessary, and 1 can be returned. The same concept applies
for AND and 0.

x3

x1

1 0

A1

A2

A3 A4

BDD 𝐺1

x3

x2

0 1

B1

B2

B3 B4

BDD 𝐺2

x3

x2

1 1

A2,B1

x1

x3

1

0

A1,B1

A2,B2

A4,B4A3,B3A4,B3

A3,B1

A2,B3

𝐴𝑝𝑝𝑙𝑦(∨, 𝐺1, 𝐺2) before reduction.

x3

x2

1 0

x1

𝐴𝑝𝑝𝑙𝑦(∨, 𝐺1, 𝐺2) after reduction.

Figure 3.2: Demonstration of a run of the BDD Apply algorithm. The figure is adapted
from the original BDD paper [9]. Nodes are labeled with arbitrary identifiers to clarify the
recursion process. Terminal node labeled (𝐴3, 𝐵1) is obtained utilizing the annihilation
properties of 1 wrt. function ∨. Call cache utilization is demonstrated by (𝐴2, 𝐵3) and
(𝐴2, 𝐵2) pointing to the same 𝑙𝑜𝑤 node (because it is the result of the same call (𝐴3, 𝐵3)),
since from that point they both called Apply on the same node. If node cache (or unique
table) was used, (𝐴3, 𝐵1), (𝐴3, 𝐵3), (𝐴4, 𝐵4) would be the same node. That would also
demonstrate the need for reducing after Apply, since (𝐴2, 𝐵2) would become redundant (as
both its 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ targets would be the same node before returning from recursion).

23

The third technique uses node memoization, sometimes called a unique table, which
is a map of triples (𝑥𝑖, 𝑖𝑑1, 𝑖𝑑2) to node 𝑣, such that 𝑣𝑎𝑟(𝑣) = 𝑥𝑖, 𝑖𝑑(𝑙𝑜𝑤(𝑣)) = 𝑖𝑑1,
𝑖𝑑(ℎ𝑖𝑔ℎ(𝑣)) = 𝑖𝑑2. Using this cache, anytime a new node has to be created (when re-
turned as a result), it is checked against this cache and if a hit occurs, the node is not
created, instead a reference to the cache is used. This way, there will be no duplicate nodes
after Apply is finished. Redundant nodes can be checked before inserting the node into
the cache, if 𝑖𝑑(𝑙𝑜𝑤(𝑣)) = 𝑖𝑑(ℎ𝑖𝑔ℎ(𝑣)) holds, then 𝑙𝑜𝑤(𝑣) is returned instead of 𝑣. Apply
then does not require explicit reduction, because it is done on-the-fly. Using this is correct,
because the cache is filled with nodes in a bottom-up order, which consequently checks
against all so far created canonical representations of sub-functions. Sometimes in algorith-
mic notation this technique is omitted, since it is functionally equivalent to using reduce
after Apply. See Figure 3.2 for a demonstration of the Apply algorithm. See Algorithm 1
for a pseudocode overview of how one recursive Apply call looks like. The top-level 𝐴𝑝𝑝𝑙𝑦()
would only create an empty call cache, call 𝐴𝑝𝑝𝑙𝑦𝑆𝑡𝑒𝑝() on root nodes of BDDs, and after
it is done, reduce the result.

Algorithm 1: BDD version of 𝐴𝑝𝑝𝑙𝑦𝑆𝑡𝑒𝑝(⊙, 𝑢, 𝑣)
Input: Binary Boolean operator ⊙, BDD node 𝑢 representing function 𝑓𝑢, BDD

node 𝑣 representing function 𝑓𝑣
Result: BDD node 𝑛 representing function 𝑓𝑢 ⊙ 𝑓𝑣

1 if 𝑢 ∈ {0,1} ∧ 𝑣 ∈ {0,1} then return 𝑢⊙ 𝑣 ;
// Checking if annihilation laws can be applied

2 if (⊙ = OR) ∧ (𝑢 = 1 ∨ 𝑣 = 1) then return 1 ;
3 if (⊙ = AND) ∧ (𝑢 = 0 ∨ 𝑣 = 0) then return 0 ;

// Checking if absorption laws can be applied
4 if ((⊙ = AND ∧ 𝑢 = 1) ∨ (⊙ = OR ∧ 𝑢 = 0)) then return 𝑣 ;
5 if ((⊙ = AND ∧ 𝑣 = 1) ∨ (⊙ = OR ∧ 𝑣 = 0)) then return 𝑢 ;
6 if callCache[(𝑢, 𝑣)] = 𝑡 ∧ 𝑡 ̸= ⊥ then return t ;
7 𝑥𝑛 ← min{𝑣𝑎𝑟(𝑢), 𝑣𝑎𝑟(𝑣)};
8 𝑙𝑛 ← 𝐴𝑝𝑝𝑙𝑦𝑆𝑡𝑒𝑝(⊙, 𝑣𝑎𝑟(𝑢) = 𝑥𝑛 ? 𝑢 : 𝑙𝑜𝑤(𝑢), 𝑣𝑎𝑟(𝑣) = 𝑥𝑛 ? 𝑣 : 𝑙𝑜𝑤(𝑣));
9 ℎ𝑛 ← 𝐴𝑝𝑝𝑙𝑦𝑆𝑡𝑒𝑝(⊙, 𝑣𝑎𝑟(𝑢) = 𝑥𝑛 ? 𝑢 : ℎ𝑖𝑔ℎ(𝑢), 𝑣𝑎𝑟(𝑣) = 𝑥𝑛 ? 𝑣 : ℎ𝑖𝑔ℎ(𝑣));

// Here could be a check of redundant node and of duplicate node
against the node cache / unique table

10 create a new node 𝑛, such that 𝑣𝑎𝑟(𝑛) = 𝑥𝑛, 𝑙𝑜𝑤(𝑛) = 𝑙𝑛, ℎ𝑖𝑔ℎ(𝑛) = ℎ𝑛;
11 callCache[(𝑢, 𝑣)]← 𝑛;
12 return 𝑛

3.3 Apply in modifications of BDDs
In ZBDDs, Apply works similarly, but in general it must recurse one level at a time. Since
the “long” edges (i.e. edges between nodes labeled 𝑥𝑖, 𝑥𝑗 , where 𝑖+1 ̸= 𝑗) in BDDs represent
variables that are irrelevant to the result, variable skipping in BDD Apply works fine. But
in ZBDDs, long edges work differently, as discussed in Section 2.6. Only some operators
can utilize level skipping. Specifically, operator ⊙ must satisfy 0⊙ 0 = 0, so that applying
to long edges pointing to 𝑢 and 𝑣 returns a long edge to 𝑢⊙ 𝑣. [3, 25],

24

The paper introducing TBDDs [34] did not provide a full description of the Apply
algorithm, only how cofactors are computed. The cofactor routine systematically checks
whether the node’s edges were not reduced according to the reduction rules – first BDD
reduction, then ZBDD reduction, then a special case of reduction applied when nodes
matching both previous reductions alternate that ensures an extra node is created for
canonicity such that ZBDD rule is enforced maximally. After establishing that no reduction
rule was used, the successors of the node are returned.

The Apply algorithm in CBDDs and CZDDs [8] only modifies the variable level splitting
step, the high and low cofactor generation step and how the results after Apply are combined
to determine the result node parameters.

In CBDDs, based on the splitting levels of a chain, one of the following three cases can
happen wrt. computing the cofactors 𝑙𝑜𝑤(𝑣𝑖, (𝑥𝑖 : 𝑥𝑗)):

• Both cofactors are the same node 𝑣𝑖 – when splitting occurs “above” the node and
because in CBDDs, level-skipping edges encode DON’T CARE chains.

• Splitting spans the same nodes as the chain node 𝑣𝑖 – cofactors are thus the descen-
dants of the node 𝑣𝑖.

• Splitting occurs “below” 𝑣𝑖 – a new node is constructed, spanning the remaining part
of the encoded OR-chain for the low cofactor, high stays the same.

After recursive Apply calls, the generated nodes are combined to form a result node based
on the following two reduction rules (if not applicable, use the results of the recursive calls
directly):

• If high and low cofactors are identical, a classic BDD reduction can be applied.

• Chain compression can be applied to create a node absorbing the low cofactor.

In CZDDs, the process is very similar. When splitting spans above the chain variables,
the low cofactor is the original node and high cofactor is 0. When splitting happens at the
same levels as the chain node, cofactors are given by the outgoing node’s edges.

When combining the results of Apply calls in CZDDs, one of the following three reduc-
tion rules can be used (otherwise use the results directly):

• Resulting nodes allow for direct application of ZBDD-rule, i.e. the high edge points
to 0, result is redirected to the low edge.

• ZBDD-rule can be applied, but a node has to be constructed encoding a DON’T-
CARE chain on skipped levels.

• Chain compression can be applied to create a node that absorbs the low cofactor.

Apply calls in ESRBDDs and CESRBDDs [3] exhaustively check for all possible com-
binations of reduction rules, complement bits and edge targets (whether or not it is some
specific terminal node) that can eliminate recursion (similar to how absorption/annihila-
tion laws with regards to ∧,∨ are checked in BDDs). The interplay of reduction rules
{X, L0, L1, H0, H1}, complement bits on edges, and terminal node values can lead to many
non-canonical CESRBDD (after Apply) that can be simplified, so the initial checks do that.
If no “recursion eliminating” pattern is found, CESRBDD Apply tries to look into the call
cache, which, similarly to ESRBDDs, contains the two edges, so on top of nodes and reduc-
tion rules (as in ESRBDDs), complement bits also differentiate unique nodes. The ternary

25

operator used in Algorithm 1 (lines 6 and 7) is an example of a cofactor routine (cofactor is
a term used extensively in descriptions of algorithms in [3]) that resolves what combination
of nodes should the apply call be made on. When recursively calling Apply on CESRBDDs,
the “cofactor” routine performs additional checks:

• When a node materialization is needed, based on the complement bit of parent node,
it sets the complement bit of the edge returned by the Apply call.

• When recursing through a low edge and encountering Lt rule, set the result edge
(since the call “triggered” the reduction) to a constant function (X, t,0). Similarly
for high edge and H0, H1

• Makes sure that the recursive call is made on a short edge.

In ESRBDDs, this routine is very similar, just omitting working with complement bits, and
not considering L1, H1 rules in the patterns.

26

Chapter 4

Automata-based Binary Decision
Diagrams — ABDDs

Automata-based binary decision diagrams (ABDDs) were introduced as an alternative way
of compactly representing binary decision diagrams [24]. This chapter contains compacted
preliminary definitions and explanations of concepts crucial to understanding this concep-
tual framework and draws heavily from Chapter 4 of [24] that first introduced ABDDs
and their canonization algorithms. Important tree automata concepts and definitions were
taken from [12] and are explained in more detail there, while the tree automata notation is
inspired by [1]. For more detailed explanation with examples, refer to the original thesis [24].

Firstly, tree automata and their properties are introduced. Then, some key concepts
of ABDDs are introduced, such as alphabets used during different parts of canonization,
boxes, trees. Finally, canonization algorithms – unfolding, normalization, folding – are
explained.

4.1 Tree automata preliminaries
The usual notion of formal languages (from Chomsky’s hierarchy) refers to sets of strings,
each string consisting of symbols from some finite non-empty set called an alphabet. Tree
languages are sets of trees, and each node/vertex of the tree is labeled with some symbol
from a ranked alphabet Σ.

A ranked alphabet is a finite set of symbols Σ with a ranking function (arity-assigning
function) # : Σ → N. Rank, or arity, of a symbol #(𝑎) ∈ N is a fixed number of child
nodes for any tree node labeled with 𝑎. Symbols with rank 0 are leaf symbols and each
ranked alphabet should contain at least one such symbol, otherwise the trees could not
be “terminated” and would be infinite. #(𝑎) = 𝑘 denotes that symbol 𝑎 has arity 𝑘
(alternatively, it can also be denoted as 𝑎/𝑘).

A tree over a ranked alphabet is defined as a partial mapping 𝑡 : N* ⇀ Σ, where N*

are sequences of numbers which represent positions in some theoretical infinite tree (every
branch has length 𝜔, and every node has 𝜔-many children). 𝜀 is the root node, 00 is the
left-most descendant of the left-most descendant of the root, etc. Since this mapping is
partial, only some sequences/positions will be present in the tree (thus making it finite).

The domain of a tree dom(𝑡) is a set of sequences from N*, each sequence representing
some tree node. Formally, for a tree 𝑡 : N* ⇀ Σ, dom(𝑡) has to satisfy the following:

1. dom(𝑡) is a finite, non-empty, prefix-closed subset of N*.

27

2. ∀𝑣 ∈ dom(𝑡) : #(𝑡(𝑣)) = 𝑛 > 0⇒ {𝑖 | 𝑣.𝑖 ∈ dom(𝑡)} = {0, . . . , 𝑛− 1}

3. ∀𝑣 ∈ dom(𝑡) : #(𝑡(𝑣)) = 0⇒ {𝑖 | 𝑣.𝑖 ∈ dom(𝑡)} = ∅

Note that . denotes concatenation of strings in this case. Non-emptiness of dom(𝑡) always
holds because 𝜀 ∈ dom(𝑡) (root node). Prefix-closure of N* naturally holds because every
node along some branch of the tree belongs to the same tree. The second condition ensures
correct labeling of child nodes of each inner node of a tree. The third condition ensures
that leaf nodes do not have any child nodes.

The 𝑖-th child of a node 𝑣 is node 𝑣.𝑖 and the 𝑖-th subtree of 𝑣 is defined as a tree 𝑡′

such that ∀𝑣′ ∈ N* : 𝑡′(𝑣′) = 𝑡(𝑣.𝑖.𝑣′). The set of all trees 𝒯Σ over the alphabet Σ is called
the universal tree language over Σ. The height |𝑡| of a tree 𝑡 ∈ 𝒯Σ rooted in position 𝑝 is
inductively defined as |𝑡| = 1 iff 𝑝 is a leaf position, otherwise |𝑡| = 1 + max{|𝑡(𝑝.𝑖)| | 𝑖 ∈
{0, . . . , 𝑛− 1}}.

Tree automaton definition

A nondeterministic finite tree automaton (NFTA) is a tuple 𝒜 = (𝑄,Σ,Δ, 𝐹) where:

• 𝑄 is a finite set of states,

• Σ is a ranked alphabet,

• 𝐹 ⊆ 𝑄 is a set of final states,

• Δ is a finite set of transitions of the form ((𝑞1, . . . , 𝑞𝑛), 𝑎, 𝑞) where 𝑞, 𝑞1, . . . , 𝑞𝑛 ∈
𝑄 ∧ 𝑎 ∈ Σ ∧#(𝑎) = 𝑛. Transitions of the form ((), 𝑎, 𝑞) are called leaf transitions.

A run of a tree automaton 𝒜 = (𝑄,Σ,Δ, 𝐹) over a tree 𝑡 ∈ 𝒯Σ is a mapping 𝜌 : dom(𝑡)→
𝑄, such that for each position 𝑣 ∈ dom(𝑡) where 𝑡(𝑣) = 𝑎 for some 𝑎 ∈ 𝑆𝑖𝑔𝑚𝑎,#(𝑎) = 𝑛,
and 𝑞 = 𝜌(𝑣), it holds that if 𝑞𝑖 = 𝜌(𝑣.𝑖) then ((𝑞1, . . . , 𝑞𝑛), 𝑎, 𝑞) ∈ Δ for some 1 ≤ 𝑖 ≤ 𝑛.

The existence of a run 𝜌 of 𝒜 over 𝑡 is denoted by 𝑡
𝜌

=⇒ 𝑞, where 𝜌(𝜀) = 𝑞. A run is
accepting if 𝜌(𝜀) = 𝑞 ∈ 𝐹 . Intuitively, a run is a tree labeled with states from 𝑄 that respects
the arities of symbols in the initial tree and transitions from Δ. A language accepted by
a state 𝑞 of a tree automaton is defined as ℒ(𝒜)(𝑞) = {𝑡 | 𝑡 𝜌

=⇒ 𝑞). A language recognized
by a tree automaton 𝒜 is ℒ(𝒜) =

⋃︀
𝑞∈𝐹 ℒ(𝒜)(𝑞).

Tree automata properties

The previous definition refers to nondeterministic bottom-up tree automaton. In a NFTA,
there can possibly exist more than one run over the same tree. Deterministic finite tree
automata (DFTA) are a special case of NFTA, in which such ambiguity cannot occur,
as there are no two transitions with the same left-hand side. A DFTA constructed from
an equivalent NFTA of 𝑛 states, in the worst case, can have 2𝑛 states. DFTAs and NFTAs
are equivalent in their expressive power – for every language ℒ recognized by a NFTA,
there exists a DFTA recognizing ℒ. The class of languages recognized by DFTAs/NFTAs
is called regular tree languages.

A NFTA 𝒜 is complete if there is at least one rule ((𝑞1, . . . , 𝑞𝑛), 𝑎, 𝑞) ∈ Δ for all 𝑎 ∈
Σ,#(𝑎) = 𝑛 and 𝑞1, . . . , 𝑞𝑛 ∈ 𝑄. A state 𝑞 is accessible, or reachable iff ∃𝑡 : 𝑡 𝜌

=⇒ 𝑞. NFTA
is reduced if all its states are accessible. For practical reasons, it is more convenient to work
with reduced NFTAs. A state 𝑞 is useful in 𝒜 if 𝜌(𝑝) = 𝑞, where 𝜌 is an accepting run of 𝒜

28

on some tree 𝑡 ∈ ℒ(𝒜) and 𝑝 ∈ dom(𝑡). In other words, state 𝑞 is useful in an automaton,
if during an accepting run of a tree from the automaton’s language, the state 𝑞 is visited.
NFTA is trimmed, if it contains no useless states.

The class of regular tree languages (recognized by bottom-up NFTAs/DFTAs), is closed
under union, complementation, and intersection.

Bottom-up tree automata compute a run of the tree starting from leafs (states that
have some leaf transition), trying to build their way to a some root state 𝑞 ∈ 𝐹 . Another,
more intuitive, way of performing a run over a tree starts from the root node of a tree and
tries to build the tree top-down, recursively. TAs working in this way are called top-down
tree automata.

A nondeterministic top-down finite tree automaton is a tuple 𝒜 = (𝑄,Σ,Δ,ℛ), differing
from the bottom-up NFTA definition in these two ways:

• 𝑅 ⊆ 𝑄 is a set of initial states called root states, and

• rules in Δ have the form (𝑞, 𝑎, (𝑞1, . . . , 𝑞𝑛)) where 𝑞, 𝑞1, . . . , 𝑞𝑛 ∈ 𝑄, 𝑎 ∈ Σ,#(𝑎) = 𝑛.

The run of a top-down tree automaton is accepting if 𝜌(𝜀) ∈ ℛ. The expressive power
of bottom-up and top-down nondeterministic tree automata is equivalent. However, deter-
ministic top-down tree automata are weaker than deterministic bottom-up tree automata.
In other words, for some top-down tree automata, there is no deterministic equivalent. The
class of languages recognized by deterministic top-down tree automata is called path-closed
tree languages.

4.2 ABDD preliminaries
During different phases of ABDD canonization, different alphabets are used. Let X =
{𝑥1, . . . , 𝑥𝑛} be a finite set of variables ordered 𝑥1 < . . . < 𝑥𝑛. The following alphabets
contain 𝑘-ary symbols ⟨L : 𝑎, H : 𝑏, . . .⟩/𝑘 denoting the function {L ↦→ 𝑎, H ↦→ 𝑏, . . .} where
𝑎, 𝑏 denote some edge type. The ellipsis . . . denotes additional elements, such as an as-
signed variable ⟨L : S, H : S, var : 𝑥𝑖⟩/2 (S denotes short edge, i.e. no reduction rule used).
⟨L : S, H : S⟩ will be used as an alternative notation for the symbols of the following

alphabets.
ΣLH = {⟨L : S, H : S⟩/2,0/0,1/0} is the low-high alphabet which serves as the base for all

other alphabets. Note that no variables are used here.
Σ⊕ = ΣLH ∪ {⊕1, . . . ,⊕𝑚 | 𝑚 ∈ N} is the port alphabet. All new symbols have arity 0

and denote output ports of boxes (tree automata representing reduction rules).
ΣX = {⟨L : S, H : S, var : 𝑥𝑖⟩/2,0/0,1/0} (for some 𝑥𝑖 ∈ X) is the binary decision tree

alphabet, enhancing ΣLH with information about variables. Note that symbols from ΣX
cannot be used to label looping transitions (variables cannot be repeated on a path of
a BDD). Additionally, .𝑣𝑎𝑟 notation will refer to the variable 𝑥𝑖 used in the symbols with
non-zero arity.

ΣLHX = ΣLH ∪ ΣX is used in UBDAs (unreduced binary decision automata), where
some transitions come from the BDD-like structure, where transitions are labeled with
variables, and some transitions come from the tree automata representing reduction rules
(no variables).

The box alphabet ΣΓ = {⟨L : 𝑎, H : 𝑏, var : 𝑥𝑖⟩/𝑘, ⟨in : 𝑐⟩/𝑙,0/0,1/0}, where 𝑎, 𝑏, 𝑐 ∈ Γ, 𝑥𝑖 ∈
X, 𝑘 = #(𝑎) + #(𝑏), 𝑙 = #(𝑐) and Γ is a set of boxes. #(𝑎),#(𝑏),#(𝑐) refer to port arity
of boxes (this will be explained later). ΣΓ is used in TAs that can directly be translated

29

to ABDDs. During the process of canonization, the symbols from the underlying UBDA
automaton-like structure get mixed with symbols from this alphabet, which leads to the
final alphabet ΣLHΓ = ΣΓ ∪ ΣLH.

Boxes

Let ℬ = (𝑄ℬ,Σ⊕,Δℬ,ℛℬ) be a top-down tree automaton, let #(ℬ) denote the arity of the
box ℬ such that #(ℬ) = |ℳℬ| where ℳℬ = {⊕𝑖 : ∃𝑞 ⊕𝑖 () ∈ Δℬ} (i.e. the arity of ℬ is
the number of different ports used in the transition relation of ℬ), and for a tree 𝑡 ∈ Σ⊕,
let ⊕𝑖 ∈ 𝑡 denote that ∃𝑝 ∈ dom(𝑡) : 𝑡(𝑝) = ⊕𝑖.

1. ℒ(ℬ) ̸= ∅ (the language of a box is not empty),

2. ℬ is trimmed,

3. ∀𝑡 ∈ ℒ(ℬ) : ⊕𝑖 ∈ 𝑡 ⇒ (∀1 ≤ 𝑗 < 𝑖 : ⊕𝑗 ∈ 𝑡) ∧ (∀𝑡′ ∈ ℒ(ℬ) : ⊕𝑖 ∈ 𝑡′) (this condition
ensures port consistency, i.e. every tree from ℒ(ℬ) uses the same set of ports),

4. ℛℬ = {𝑟ℬ} (a box has one root state),

5. ∀1 ≤ 𝑖 ≤ #(ℬ) : (𝑟ℬ,⊕𝑖, ()) /∈ Δℬ (i.e. there are no trivial trees in ℒ(ℬ) such that the
root position of the tree is labeled with ⊕𝑖),

6. ∀1 ≤ 𝑖 ≤ #(ℬ) : (∃!𝑞 ∈ 𝑄ℬ : (𝑞,⊕𝑖, ()) ∈ Δℬ) (for every port ⊕𝑖, there is a unique
state with an outgoing ⊕𝑖-transition), and

7. Let 𝑣𝑎𝑟 : {root ,⊕1, . . . ,⊕#(ℬ)} → (X ∪ {𝑥𝑛+1}) be a mapping of root node and
all output ports of ℬ to variables (𝑥𝑛+1 /∈ X is a pseudo-variable for leaf level),
and let 𝑡 be a tree over Σ⊕. 𝑣𝑎𝑟 can be mapped to 𝑡 if there exists a function
𝑣𝑎𝑟𝑡 : dom(𝑡)→ (X ∪ {𝑥𝑛+1}), such that:

• 𝑣𝑎𝑟𝑡(𝜀) = 𝑣𝑎𝑟(root),
• 𝑣𝑎𝑟𝑡(𝑝.𝑎) = 𝑥𝑖+1 ⇐⇒ 𝑣𝑎𝑟𝑡(𝑝) = 𝑥𝑖 for 𝑎 ∈ {L, H}, and
• 𝑣𝑎𝑟𝑡(𝑝) = 𝑣𝑎𝑟(⊕𝑖) for 𝑡(𝑝) = ⊕𝑖.

It is then required that for every mapping 𝑣𝑎𝑟 : {root ,⊕1, . . . ,⊕#(ℬ)} → (X∪{𝑥𝑛+1}),
it holds that there is at most one 𝑡 ∈ ℒ(ℬ), such that 𝑣𝑎𝑟 can be mapped to 𝑡.

∃! denotes the unique existential quantifier (“exists exactly one”). These conditions
ensure that boxes are constructed in a way that allows for exactly one interpretation of their
semantics in an ABDD (with regards to how Boolean functions are evaluated). Currently,
ABDDs utilize 7 boxes, see Figure 4.1.

Binary decision trees

A binary decision tree (BDT) is a tree 𝑡 : N* ⇀ ΣX such that the following two conditions
hold (on top of the ones stated in Section 4.1):

1. ∀𝑝 ∈ dom(𝑡) : 𝑡(𝑝).𝑣𝑎𝑟 = 𝑥𝑖 ∧ 𝑝′ ∈ {𝑝.𝑗|𝑗 ∈ N, 𝑝.𝑗 ∈ dom(𝑡)} ⇒ 𝑡(𝑝′).𝑣𝑎𝑟 = 𝑥𝑖+1

2. 𝑡(𝜀).𝑣𝑎𝑟 = 𝑥𝑖 ⇒ ∀𝑝 ∈ dom(𝑡) : #(𝑡(𝑝)) = 0⇒ |𝑝| = 𝑛− 𝑖+ 1

30

q0

q1 q2

0 ⊕1

(a) Box L0

r0

r1 r2

1 ⊕1

(b) Box L1

t0

t1 t2

0⊕1

(c) Box H0

u0

u1 u2

1⊕1

(d) Box H1

p0

p1

⊕1

(e) Box X

s0

s1 s2
⊕2⊕1

(f) Box L⊕

v0

v1 v2

⊕1 ⊕2

(g) Box H⊕

Figure 4.1: Boxes used in ABDDs. The canonical form of an ABDD is obtained by using
this box order: (L0, H0, L1, H1, X, L⊕, H⊕). Note that if in any box, both states indexed by
1 and 2 had self-loops, then that box would be nondeterministic (breaking condition 7 –
unambiguity). All transitions in the boxes are short, and transitions labeled with symbol
⟨L : S, H : S⟩ are denoted using “hyperedges” with dashed and solid lines. For example, for
a transition 𝑞 ⟨L : S, H : S⟩ (𝑞1, 𝑞2), the dashed line symbolizes the L part of the transition
(leading to 𝑞1) and the solid line symbolizes the H part of the transition (leading to 𝑞2).

The first condition ensures that consecutive nodes are labeled with consecutive variables.
The second condition ensures that 𝑡 is a full binary tree with branches of the same length.
The variable of a position 𝑝 is defined as var(𝑝) = 𝑥|𝑝|+1. Every position 𝑝 ∈ dom(𝑡) of
a BDT 𝑡 gives rise to the Boolean function BF (𝑡, 𝑝):

BF (𝑡, 𝑝) =

{︃
𝑡(𝑝) if 𝑡(𝑝) ∈ {0,1}
(¬𝑡(𝑝).var ∧ BF (𝑡, 𝑝.0)) ∨ (𝑡(𝑝).var ∧ BF (𝑡, 𝑝.1)) otherwise.

The Boolean function represented by the BDT 𝑡 is BF (𝑡, 𝜖).

4.3 ABDD canonization
Since all needed concepts have been defined, now a general overview of canonization algo-
rithms for ABDDs will be presented. More detailed descriptions and definitions of algo-
rithms are in [24].

31

An unreduced binary decision automaton (UBDA) is a TA 𝒰 = ⟨𝑄,ΣLHX,Δ,ℛ⟩. A BDT
run of 𝒰 on a BDT 𝑡 is a function 𝜌 : dom(𝑡)→ 𝑄, where:
∀𝑝 ∈ dom(𝑡) : 𝜌(𝑝) = 𝑞 ∧ 𝑡(𝑝) = ⟨L : S, H : S, var : 𝑥⟩ ∧ ∀0 ≤ 𝑖 ≤ 1 : (𝑞𝑖 = 𝜌(𝑡(𝑝.𝑖))) =⇒

𝑞 ⟨L : S, H : S⟩ (𝑞0, . . . , 𝑞𝑛−1) ∈ Δ ∨ 𝑞 ⟨L : S, H : S, var : 𝑥⟩ (𝑞0, . . . , 𝑞𝑛−1) ∈ Δ.

Then, 𝑡 is in the BDT language of a state 𝑞 ∈ 𝑄 in 𝒰 , denoted as 𝑡 ∈ ℒBDT (𝒰 , 𝑞) if there
exists a BDT run 𝜌 of 𝒰 on 𝑡 such that 𝜌(𝜖) = 𝑞. The BDT language of 𝒰 is ℒBDT (𝒰) =⋃︀

𝑟∈ℛ ℒBDT (𝒰 , 𝑟). It represents all BDTs respecting the variables in the transitions of the
UBDA.
𝒰 is called well-specified if its BDT language contains exactly one BDT 𝑡 and there

exists exactly one run 𝜌𝑡 of 𝒰 over 𝑡. The semantics of 𝒰 is then defined as 𝑠𝑒𝑚(𝒰) = 𝑡.
Let 𝒰 = ⟨𝑄,ΣLHX,Δ,ℛ⟩ be a well-specified UBDA such that 𝑡 = 𝑠𝑒𝑚(𝒰). The run

language of a state 𝑞 ∈ 𝑄 is defined as ℒ𝜌(𝑞) = {𝑡′ | ∃𝑝 ∈ dom(𝑡) : 𝜌𝑡(𝑝) = 𝑞, 𝑡′ is the subtree
of 𝑡 at 𝑝}; in other words, ℒ𝜌(𝑞) contains all subtrees of 𝑡 whose root is labeled by 𝑞 in 𝜌𝑡.

A well-specified UBDA 𝒰 is normalized, if for all distinct states 𝑞, 𝑞′ of 𝒰 , it holds that
ℒ𝜌(𝑞) ∩ ℒ𝜌(𝑞′) = ∅.

A binary decision automaton (BDA) over the set of boxes Γ is a tree automaton 𝒱 =
⟨𝑄,ΣLHΓ,Δ, {𝑟𝒱}⟩ such that if there is a transition 𝑞 ⟨in : 𝑎⟩/𝑘 (𝑞1, . . . , 𝑞𝑘) ∈ Δ, then
𝑞 = 𝑟𝒱 and there is no other transition leaving 𝑟𝒱 . Well-specified and normalized BDAs are
defined analogously to UBDAs.

The unfolding procedure traverses the UBDAs structure in a breadth-first traversal re-
specting the lexicographic order (low targets first, then high targets). During the traversal,
every occurrence of a box in a transition is replaced with the transitions from that box,
while correctly replacing all states with port transitions with the states from the initial
transition.

Normalization of a UBDA uses a bottom-up traversal of the UBDA, keeping track of
variables (starting from a leaf level pseudo-variable 𝑥𝑛+1, descending) and merging the
states with the same low and high descendants and the same variable.

The folding procedure takes a normalized UBDA, and based on the given order of the
boxes, traverses the states of the UBDA structure in a lexicographic order (depth-first,
low before high) and tries to “cover” a part of the UBDA with the given box. To achieve
that, an intersection-like construction between the UBDA and the box is created, which
tries to place the port transitions from the box to the UBDA, marking the UBDA’s states
as targets of a newly folded transition, along with variables, with which these states are
accessed. This process can sometimes “disconnect” some states of the UBDA, making
them top-down inaccessible. The more states are disconnected in such a way, the better
the reduction. Using different sets of boxes in different orders can be used to simulate
different BDD models.

To obtain a canonical representation of a Boolean function using an automaton bi-
nary decision diagram 𝒟 over the set of boxes Γ, the following sequence of operations is
performed:

1. unfold boxes in 𝒟 to obtain an unreduced binary decision automaton (UBDA) 𝒰𝒟,

2. obtain a normalized UBDA 𝒰 ′
𝒟, and

3. fold 𝒰 ′
𝒟 using the boxes from Γ in a specified order.

An automaton binary decision diagram (ABDD) over boxes Γ is defined as a BDA
𝒟 = ⟨𝑄,ΣΓ,Δ, {𝑟𝒟}⟩, such that:

32

q0

q1

q2 q3

q4 q5 q6

x1

x2

x3x3

1 0 1

(a) Normalization input

{q0}

{q1,q2}

{q3,q4}{q2}

{q4,q6}{q5}

x1

x2

10

x1

x3 x3

(b) Normalization output

Figure 4.2: Demonstration of an incorrect transition created by the previous normalization.
The grey transition in (b) creates infeasible paths in the normalized UBDA and will not be
created in the improved version.

1. 𝒟 contains no loops,

2. 𝒟 has no useless states,

3. every state 𝑞 ∈ 𝑄 has exactly one outgoing transition,

4. ∀𝑞 𝑎 (𝑞1, . . . , 𝑞𝑘) ∈ Δ : ∀1 ≤ 𝑖 ≤ 𝑘 : var(𝑞) < var(𝑞𝑖) ∨ var(𝑞𝑖) = ⊥ (all paths in
the ABDD respect the variable order), and

5. ∀𝑞 ∈ 𝑄 : var(𝑞) = ⊥ ⇐⇒ ∃𝑞 𝑎 () ∈ Δ : 𝑎 ∈ {0,1} (all states except leaves have
to be labeled with a variable).

4.4 Further remarks
An improvement to the normalization algorithm used during canonization, presented in [24],
is proposed here, see Algorithm 2. Some transitions in the normalized UBDA do not make
sense with regards to the variable order, i.e. have no semantics within the result. Building
of “intersectoids” during the folding procedure will still analyze these transitions. However,
since they do not respect the variable order X (either they create paths that repeat a variable
or even go against the order), they are ignored and take no part in creating the mapping
for the ports of the box used as a reduction in the folded result.

The proposal uses a cache that stores the used variable for each created state set (or
a macrostate of the resulting normalized UBDA). This cache (labeled 𝛽 in Algorithm 2)
will allow the algorithm to check every created transition. If some transition’s target state
should have a smaller or equal cached variable than the source state, the transition is not
created (line 11). The proposed change should lead to faster folding procedure, since less
transitions have to be processed during creation of an intersectoid, and finding a mapping
should also be faster. For demonstration of edges that have no semantics in the normalized
UBDA, see Figure 4.2.

33

Algorithm 2: New UBDA normalization
Input: A well-specified UBDA 𝒰 = ⟨𝑄,ΣLHX,Δ,ℛ⟩, a variable order

X = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 𝑥𝑛⟩
Result: A normalized UBDA 𝒰 ′ s.t. ℒBDT (𝒰 ′) = ℒBDT (𝒰)

1 𝐼0 ← {𝑞 | 𝑞 0 () ∈ Δ}; 𝐼1 ← {𝑞 | 𝑞 1 () ∈ Δ};
2 Δ′ ← {𝐼0 0 (), 𝐼1 1 ()}; 𝒬′ ← {𝐼0, 𝐼1}; ℛ′ ← ∅;
3 𝛼 : N ⇀ 22

𝑄 ; 𝛼[𝑛+ 1]← {𝐼0, 𝐼1};
4 𝛽 : 2𝑄 ⇀ N; 𝛽[𝐼0]← 𝑛+ 1; 𝛽[𝐼1]← 𝑛+ 1;
5 foreach 𝑥𝑖 ∈ ⟨𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥2, 𝑥1⟩ do
6 foreach (𝑈, 𝑉) ∈ 𝛼[𝑖]× 𝛼[𝑖] do
7 𝑊 ← {𝑞 | 𝑞 ⟨L : S, H : S, var : 𝑥𝑖⟩ (𝑢, 𝑣) ∈ Δ | 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑉 } ∪
8 {𝑞 | 𝑞 ⟨L : S, H : S⟩ (𝑢, 𝑣) ∈ Δ | 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑉 };
9 if 𝑊 = ∅ then continue;

10 𝛼[𝑖− 1]← 𝛼[𝑖− 1] ∪ {𝑊}
11 if 𝛽[𝑊] = ⊥ ∨ (𝛽[𝑈] > 𝛽[𝑊] ∧ 𝛽[𝑉] > 𝛽[𝑊]) then
12 𝛽[𝑊]← 𝑖;
13 if 𝑊 ∈ {𝑈, 𝑉 } then Δ′ ← Δ′ ∪ {𝑊 ⟨L : S, H : S⟩ (𝑈, 𝑉)} ;
14 else Δ′ ← Δ′ ∪ {𝑊 ⟨L : S, H : S, var : 𝑥⟩𝑖 (𝑈, 𝑉)} ;
15 𝑄′ ← 𝑄′ ∪ {𝑊};
16 if 𝑊 ∩ℛ ≠ ∅ then ℛ′ ← ℛ′ ∪ {𝑊};

17 𝛽 ← 𝛽 ∪ {𝑞 ↦→ 𝑖 | 𝑞 ∈ 𝛼[𝑖− 1]};
18 return 𝒰 ′ = ⟨𝒬′,ΣLHX,Δ

′,ℛ′⟩

34

Chapter 5

ABDD Apply

The following chapter explains all different techniques and constructions that were used
to implement the Apply algorithm on ABDDs. Firstly, explanation of how different boxes
can be applied together without unfolding is provided. Secondly, node materialization, i.e.
a way to synchronize recursive descent within two different ABDD structures, such that
node variables are the same, is explained. After that, additional optimizations that were
utilized in the algorithm (memoization, etc.) are discussed. Finally, an overview of the
whole algorithm is given.

It is important to have some intuition of why concepts like reduction rule merging
and node materialization are important. A Boolean function in ABDDs is represented
by an edge, which consists of the reduction rule and the target nodes (an edge can have
multiple targets in case of boxes with multiple ports). Since the main requirement for the
implementation of ABDD Apply is that the complexity of the algorithm depends on the
sizes of the input graphs and not on the number of variables, the algorithm needs to be
able to combine two edges (which can skip 𝑛 variables) in constant time.

Combining (or merging) two edges using a Boolean operator during Apply can only
be done when the edges represent Boolean functions over the same domains. This means
that the edges have to originate from nodes of the same variable (additionally, for correct
edge combining, it is also enforced that the target nodes of both edges also share the same
variable).

However, during Apply’s traversal of two different ABDDs, where different reductions
are used in different places (skipping different ranges of variables), the conditions for suc-
cessful edge merging are not always met. For this reason, Apply will “reintroduce” (or
arbitrarily create) an intermediate node on some edge, such that after this node is created,
the conditions for edge merging are met and the recursive algorithm can proceed. In the
worst case, every edge of the ABDD will require these arbitrary nodes, which will still keep
the worst case complexity linear with regards to the input graph sizes. Notably, introducing
a node on a reduced edge of an ABDD needs to be done with regards to the semantics of
the box representing the reduction. A demonstration of one step of Apply on ABDDs for
top-level understanding and intuition is in Figure 5.1.

Before explaining the Apply algorithm on ABDDs, some supporting notation is in-
troduced, which is more natural to use and more closely reflects the implementation.
Given a transition 𝜏 = 𝑞 ⟨L : ℬ1, H : ℬ2, var : 𝑥𝑖⟩ (𝑞1, . . . , 𝑞𝑎, 𝑞𝑎+1, . . . 𝑞𝑎+𝑏) ∈ Δ in a BDA
𝒟 = ⟨𝑄,ΣΓ,Δ, {𝑟𝒟}⟩, such that 𝑎 = #(ℬ1), 𝑏 = #(ℬ2) (assuming #(S) = 1), node
𝑛 = node_cast(𝑞) of an ABDD is obtained from 𝑞 ∈ 𝑄 in the following manner:

35

x4...

x1

x7...

x1

[L0] [H1]

fL

f g

gHfH gL

... ...

fHL fHH gHL gHH

(a) initial two inputs

x1

... x2

x3

x40

fL [L0]

fHL fHH

fH

(b) expanded edge 𝑓𝐻

x4...

x1

x4...

x1

[L0] [H1]

fL

f g

gHfH gL

... ...

fHL fHH

gHL gHH

x7 1

g'HHg'HL

[X][H1]

(d) after materialization

x4...

x1

[L0⊙H1]

f⊙g

fH⊙gHfL⊙gL

...

fHH⊙g'HHfHL⊙g'HL

...

(e) output

x1

... x2

x3

x4

1

gL

x5

x6

x7

[H1]

[H1]
1

gHL gHH

gH

1

(c) expanded edge 𝑔𝐻

Figure 5.1: An overview of combining a pair of ABDD edges representing functions 𝑓𝐻 , 𝑔𝐻
with operator ⊙ – one call of the Apply algorithm. (a) shows the initial two ABDD struc-
tures surrounding edges 𝑓𝐻 , 𝑔𝐻 . (b) shows the “unfolded” version of 𝑓𝐻 . (c) shows the
“unfolded” version of 𝑔𝐻 . The unfolded edges should provide intuition for why node mate-
rialization is necessary in Apply and how it should work in ABDDs. Since edge 𝑔𝐻 needs
materialization, (d) shows how the structure of the second input is changed. Finally, (e)
shows how the result is obtained. The resulting edge will use a reduction that is the result
of merging the initial reduction rules (as denoted in the bracket [L0 ⊙ H1]).

• 𝑛.var = 𝑥𝑖

• 𝑛.lowbox = ℬ1

• 𝑛.highbox = ℬ2

• 𝑛.low = ⟨𝑛𝑜𝑑𝑒_𝑐𝑎𝑠𝑡(𝑞1), . . . , 𝑛𝑜𝑑𝑒_𝑐𝑎𝑠𝑡(𝑞𝑎)⟩,

• 𝑛.high = ⟨𝑛𝑜𝑑𝑒_𝑐𝑎𝑠𝑡(𝑞𝑎+1), . . . , 𝑛𝑜𝑑𝑒_𝑐𝑎𝑠𝑡(𝑞𝑎+𝑏)⟩

• 𝑛.leaf = ⊥

For transitions 𝜅 = 𝑞 𝑎 () where 𝑎 ∈ {0,1}, all properties of 𝑛 = node_cast(𝑞) are ⊥,
except for 𝑛.leaf = 𝑎. In the following, an edge will refer to the pair ⟨𝑛.lowbox , 𝑛.low⟩ or
⟨𝑛.highbox , 𝑛.high⟩. For an edge 𝑒, 𝑒.𝑟𝑢𝑙𝑒 and 𝑒.𝑡𝑎𝑟𝑔𝑒𝑡𝑠 refers to the box and target nodes,
respectively. The notion of an edge in this case is the same as the notion of a cofactor,
as used in [3, 8]. The full ABDD can then be understood as a recursive data structure,
represented by a root edge (a box with its target nodes), and each node (except leaves) is
associated with a variable and low and high edges. Additionally, since within boxes, there
are no box occurrences on edges ⟨L : S, H : S⟩ , a shortened notation LH can be used.

36

5.1 Applying Boolean operations on reduced edges
In this section, combining edges using Boolean operators is explained. In each call of the
Apply procedure, when processing two nodes 𝑛1, 𝑛2 from separate ABDDs, the procedure
tries to combine the 𝑙𝑜𝑤 cofactors of 𝑛1, 𝑛2, and then tries to combine the ℎ𝑖𝑔ℎ cofactors of
𝑛1, 𝑛2, obtaining new cofactors 𝑙𝑜𝑤𝑐, ℎ𝑖𝑔ℎ𝑐, which are then merged (and possibly, reduced)
into the resulting node. Combining the semantics of the boxes using some Boolean operator
can lead to a potentially predetermined result (short-circuiting), or it can lead to obtaining
some other box’s behavior. Doing this efficiently could avoid recursing to further calls of
the Apply function. Given two edges within the ABDD, starting from the same variable
level 𝑥𝑖, and leading to nodes of the same variable level 𝑥𝑗 (so, essentially, representing
binary trees of equal height), one can easily perform Boolean operations on the leaf nodes’
values of these trees, as demonstrated in Figure 5.2. The following text will explain how to
perform this procedure on boxes instead of trees.

x2

x1

x2

x3 x3 x3 x3

00 0 0 0 0 0 ⊕

0⊕ 0 0 0 0 0 0

L0:

H0:

00 0 0 0 0 0 0AND:

0
(a) The two reduction rules cancel out

x2

x1

x2

x3 x3 x3 x3

11 1 1 1 1 1 ⊕

1⊕ 1 1 1 1 1 1

L1:

H1:

1⊕ 1 1 1 1 1 ⊕AND:

H1 L1
(b) The result is more granular

Figure 5.2: The motivation behind combining boxes with Boolean operators. Two examples
of using AND to evaluate the result of two aligned binary decision trees (obtained by
unwinding the box reduction). (a) leads to short circuiting the evaluation to zero. (b)
cannot be represented by a single box, but by introducing a root node, its two subtrees can
be represented by the reduction rules of ABDDs.

Given two boxes ℬ1 = ⟨𝑄1,Σ⊕,Δ1,ℛ1⟩, ℬ2 = ⟨𝑄2,Σ⊕,Δ2,ℛ2⟩, and a binary Boolean
operator ⊙, the ⊙-product of ℬ1,ℬ2 is a box ℬ = ⟨𝑄1×𝑄2,Σ⊕,ΔLH∪Δ𝑜𝑢𝑡,ℛ1×ℛ2⟩, where:

ΔLH = {⟨𝑞, 𝑞′⟩ LH (⟨𝑞1, 𝑞′1⟩, ⟨𝑞2, 𝑞′2⟩) | 𝑞 LH (𝑞1, 𝑞2) ∈ Δ1, 𝑞
′ LH (𝑞′1, 𝑞

′
2) ∈ Δ2}

Δ𝑜𝑢𝑡 = {⟨𝑞, 𝑞′⟩ 𝑎 () | 𝑞 𝑎1 () ∈ Δ1, 𝑞 𝑎2 () ∈ Δ2, 𝑎← op_table[⊙, 𝑎1, 𝑎2].sym}
𝑓 : 𝑄 ⇀ Info = {⟨𝑞, 𝑞′⟩ ↦→ 𝑝 | ⟨𝑞, 𝑞′⟩ 𝑎 () ∈ Δ𝑜𝑢𝑡, 𝑝← op_table[⊙, 𝑎1, 𝑎2].info}

Examples of op_tables for some basic Boolean operators are found in Table 5.1. The
⊙-product describes what boxes will be used, but does not explain the semantics behind the
ports. Each port from the initial boxes ℬ1,ℬ2 is mapped to a node from their respective

37

Table 5.1: Output transition rules for creating the ⊙-product between boxes for 4 sample
Boolean functions; the⊥ symbol means no meta-information needed, 𝑖 or 𝑗 without negation
symbol ¬ refer to the case where the port-mapped node is used directly, with the negation
symbol, the subgraph rooted in the port-mapped node needs to be negated, and (𝑖, 𝑗) means
that the resulting node needs to be computed using apply on nodes port-mapped to by ports
⊕𝑖,⊕𝑗 . Note how the annihilation properties of AND and OR functions are utilized.

AND 0 1 ⊕𝑗

0 (0,⊥) (0,⊥) (0,⊥)
1 (0,⊥) (1,⊥) (⊕, 𝑗)
⊕𝑖 (0,⊥) (⊕, 𝑖) (⊕, (𝑖, 𝑗))

OR 0 1 ⊕𝑗

0 (0,⊥) (1,⊥) (⊕, 𝑗)
1 (1,⊥) (1,⊥) (1,⊥)
⊕𝑖 (⊕, 𝑖) (1,⊥) (⊕, (𝑖, 𝑗))

XOR 0 1 ⊕𝑗

0 (0,⊥) (1,⊥) (⊕, 𝑗)
1 (1,⊥) (0,⊥) (⊕, 𝑗,¬)
⊕𝑖 (⊕, 𝑖) (⊕, 𝑖,¬) (⊕, (𝑖, 𝑗))

NAND 0 1 ⊕𝑗

0 (1,⊥) (1,⊥) (1,⊥)
1 (1,⊥) (0,⊥) (⊕, 𝑗,¬)
⊕𝑖 (1,⊥) (⊕, 𝑖,¬) (⊕, (𝑖, 𝑗))

ABDDs. Based on the output symbols and the semantics of the ⊙ operator, there are three
situations that can happen with regards to the ports:

1. no recursion – the port-mapped node 𝑛 is used directly (from one of the initial edges),
2. negation – the port-mapped node 𝑛 is used in the negated form (so a negation of the

subgraph rooted in 𝑛),
3. recursive Apply with ⊙ – the port-mapped node is the result of a recursive apply call

on nodes 𝑛1, 𝑛2.

The partial mapping 𝑓 maps the port-states of the ⊙-product ℬ to the necessary meta-
information about the port. The meta information about the port says which ports from
which boxes are used (which can be then directly mapped to the respective nodes of the
initial ABDDs), if the resulting node mapped to the port should be negated, or if the
resulting node mapped to the port is computed with a recursive apply call. Each element
of Info can be formally defined as a tuple (𝑞1, 𝑞2,neg , rec), where:

• 𝑞1 ∈ 𝑄1 ∪ {⊥}, 𝑞2 ∈ 𝑄2 ∪ {⊥} denote the port states from the first and second box
respectively (or ⊥ if unused).

• neg ∈ {0, 1} denotes the negation flag. If neg = 1, then exactly one of 𝑞1, 𝑞2 must be
some port state (and thus not ⊥). If the flag is set, then the port-mapped node (based
on the mapping 𝑓), that is the node of the ABDD which the port state represents,
should be negated.

• rec ∈ {0, 1} denotes the recursion flag. If rec = 1, both 𝑞1 and 𝑞2 must be port states
(and not ⊥) and the node mapped to the given port (based on the mapping 𝑓) is the
result of the recursive Apply call of the corresponding nodes port-mapped to states
𝑞1, 𝑞2.

Just obtaining the ⊙-product is not enough. In some cases (as demonstrated in Fig-
ure 5.3), the obtained automaton is not comparable to any of the used boxes. In that case,
a recursive search of boxes rooted in states of the ⊙-product is needed. During this search,

38

r0

r1 r2

1 ⊕a1

(a) Box L1

v0

v1 v2

⊕b1 ⊕b2

(b) Box H⊕

(r0,v0)

(r1,v0) (r0,v2)

(r1,v2) (r2,v2)(r1,v1)

⊕b1 ⊕b2 ⊕a1 AND ⊕b2

(c) ⊙-product of boxes L1, H⊕.

(r0,v0)

H⊕ L⊕
[⊕1 : ⊕b1]

[⊕2 : ⊕b2]

[⊕1 : ⊕b2]

[⊕2 : ⊕a1 AND ⊕b2]

(d) Obtained box tree.

Figure 5.3: Demonstration of obtaining a ⊙-product. Inputs are boxes L1 and H⊕, and
⊙ = AND . Given the initial edges 𝑒1 = ⟨L1, ⟨𝑎1⟩⟩, 𝑒2 = ⟨H⊕, ⟨𝑏1, 𝑏2⟩⟩ going from nodes
labeled with variable 𝑥𝑖, the obtained box tree can be used to get the edge ⟨S, ⟨𝑛⟩⟩, where
𝑛 is a newly created node, such that 𝑛.var = next(𝑥𝑖), low(𝑛) = ⟨H⊕, ⟨𝑏1, 𝑏2⟩⟩, high(𝑛) =
⟨L⊕, ⟨𝑏2, 𝑐⟩⟩, where 𝑐 = 𝑎1 ⊙ 𝑏2. The greyed-out transitions were irrelevant to the box tree
creation (i.e. using these lead to unsuccessful search of comparable boxes).

starting from the root state of the box, the automaton rooted in the visited state is com-
pared with all of the boxes for language equality. If no box is equal, the search splits based
on the outgoing ⟨L : S, H : S⟩ transition. In case more outgoing transitions like that are
present, each one of them is tried until one leads to a full box tree.

Experimenting with box⊙-products, and subsequently with the created box trees showed
the following. Every possible pair of boxes from this model (see Figure 4.1), when combined
using any of the binary Boolean operators, yields either a box tree with one leaf node
(meaning it can be translated directly to some box), or a box tree with one inner node and
two leaf nodes. This is promising, because it means that aside from the occasional need
to introduce one node, the set of boxes is “closed” under the Boolean operators, meaning
that there is no need to introduce a new box just to represent the semantics of some box
product. There are two cases in which some special handling is needed. If a box product
yields trivial false, then the resulting box would be X leading to a terminal 0 (similarly with
trivial true). For example, if performing L0 AND H0, the result will be a box that has only
0-labeled output transitions. Notably, each leaf node 𝑏 of the box tree has the name of
the box used (𝑏.box), and the list of information (𝑏.info) about how to map the ports (i.e.
which nodes from the initial edge targets to use, whether to negate them, and if recursion
is needed). In case the node is non-leaf, there is no information. Note that during Apply,
when the box tree is traversed and some node has a set recursion flag, this can lead to
indirect recursion (Apply → box tree processing → Apply . . .) The procedure of obtaining
the box product and the box tree is demonstrated in Figure 5.3.

5.2 Synchronizing variables during the recursive descent
The simultaneous recursive descent in both ABDD inputs needs to be done in such a way,
that when cofactors are computed, the source node variables are equal. Shannon expan-
sion [31], which describes how variables can arbitrarily be introduced into the existing

39

Boolean function, allows to guide the recursion. This becomes challenging, however, when
a node with a specific variable has to be introduced on an already reduced edge, such that
the box’s semantics are kept intact. This process will be called node materialization.

Before going into the specifics of node materialization, some supporting terms have to
be defined. Given some box ℬ, variables 𝑥𝑖𝑛 and 𝑥𝑜𝑢𝑡𝑖 for ⊕𝑖 ∈ Σ⊕, a state 𝑞 of a box can
“see” some variable 𝑥𝑖, if ∃𝑡 ∈ ℒ(ℬ) : ∃𝑝 ∈ dom(𝑡) : 𝜌(𝑝) = 𝑞 ∧ 𝑡(𝑝) = ⟨L : S, H : S, var : 𝑥𝑖⟩.
Essentially a state 𝑞 can see the variable 𝑥𝑖, if the box’s run on this tree assigns 𝑞 to node
labeled with ⟨L : S, H : S, var : 𝑥𝑖⟩. Notably, the input variable 𝑥𝑖𝑛 is the one assigned to the
parent node of the ABDD, and the boxes on the 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ edges will start their run
with the next(𝑥𝑖𝑛) variable, where next() refers to the following variable in the X ordering.

First, node materialization is explained in steps, and then each step will be elaborated
on. Before the process is started, here is the information that is known beforehand and is
relevant during the process: an edge of the ABDD 𝑒 = ⟨ℬ, ⟨𝑜𝑢𝑡1, . . . 𝑜𝑢𝑡#(ℬ)⟩⟩ (it does not
matter if the edge is low or high), a variable 𝑥𝑖𝑛, from which the edge starts, variables 𝑥𝑜𝑢𝑡𝑖
for all targets of the edge, and the materialized variable 𝑥𝑚.

1. First, the variable ranges for each state of box ℬ are computed (see Algorithm 3).
2. Then, a materialized box ℬ𝑚 is created from ℬ utilizing the variable range information.

The materialized box transition graph can be thought of as consisting of two partitions
(cut by transitions labeled 𝑥𝑚), the first partition consists of states that can see 𝑥𝑚,
or can only see variables smaller than 𝑥𝑚. The second partition consists of states that
can see variables larger than 𝑥𝑚.

3. Within ℬ𝑚, a two-phase search of boxes that can contain the semantics of the pre-
materialized and post-materialized partitions is performed.

4. This will create a materialized “pattern”, which can then be inserted into the ABDD.

Algorithm 3 describes how for each state of the box, the range of variables is computed.
The algorithm utilizes information about looping transitions and terminable transitions
(i.e. transitions whose children all have some output transition). The algorithm works by
propagating the variable bounds top-down and bottom-up, until every state has both of the
variable ranges bounds set. Since unambiguity and other properties of boxes are assumed,
every bound for every state should be computed. After variable ranges are computed, the
process of obtaining a materialized box follows.

In the following text, initial states refer to those that are in the domain of 𝜎, i.e. have not
been split or have been split and their variable range ends with the materialized variable.
The target states refer to those that are in the domain of 𝜏 , i.e. have been split and their
ranges do not contain materialized variable 𝑥𝑚 (alternatively, domain of 𝜏 has states that
can see next(𝑥𝑚)). Given a box ℬ = ⟨𝑄,Σ⊕,Δ,ℛ⟩:

• 𝐿 = {𝑞 LH (𝑞1, 𝑞2) ∈ Δ : ∀𝑡 ∈ {𝑞1, 𝑞2} : 𝑡 ∈ reachable(⟨𝑄,Σ,Δ, {𝑡}⟩)} is the set of
self-looping transitions,

• 𝑇 = {𝑞 LH (𝑞1, 𝑞2) ∈ Δ : ∀𝑡 ∈ {𝑞1, 𝑞2} : 𝑡 /∈ reachable(⟨𝑄,Σ,Δ, {𝑡}⟩)}∪{𝑞 𝑎 () ∈
Δ : 𝑎 ∈ Σ⊕} is the set of terminating transitions (i.e. those that are used when the
state has to stop looping),

• 𝜎 : 𝑄 ⇀ X×X = {𝑞 ↦→ [minv(𝑞), (minv(𝑞) ≤ 𝑥𝑚 < maxv(𝑞)?𝑥ℎ : maxv(𝑞))]} contains
information about variable ranges for all states from the initial box, however, for those
states whose ranges did contain the materialized variable, it contains modified ranges,
and

40

Algorithm 3: Compute variable ranges for box
Input: A box ℬ = ⟨𝑄,Σ⊕,Δ, {𝑞𝑟}⟩, an input variable 𝑥𝑖𝑛, output variable

mapping 𝑜𝑢𝑡 : 𝑄 ⇀ X
Result: Two mappings 𝑚𝑖𝑛𝑣,𝑚𝑎𝑥𝑣 : 𝑄→ X, which define the variable ranges

that each state within the box can “see”
1 minv = {𝑞𝑟 ↦→ next(𝑥𝑖𝑛)} ∪ {𝑞 ↦→ ⊥ : 𝑞 ∈ 𝑄 ∖ {𝑞𝑟}};
2 maxv = {𝑞 ↦→ 𝑜𝑢𝑡(𝑞) : 𝑞 ∈ dom(𝑜𝑢𝑡)} ∪ {𝑞 ↦→ ⊥ : 𝑞 ∈ 𝑄 ∖ dom(𝑜𝑢𝑡)};
3 𝑇 = {𝑞 LH (𝑞1, 𝑞2) ∈ Δ : 𝑎 ∈ Σ⊕ : ∃𝑞1 𝑎 () ∈ Δ, ∃𝑞2 𝑎 () ∈ Δ};
4 𝐿 = {𝑞 LH (𝑞1, 𝑞2) ∈ Δ : ∀𝑡 ∈ {𝑞1, 𝑞2} : 𝑡 ∈ reachable(⟨𝑄,Σ,Δ, {𝑡}⟩)};
5 do
6 foreach 𝑞 ∈ 𝑄 do
7 if ∄𝑞 LH (𝑞1, 𝑞2) ∈ 𝐿 ∧maxv(𝑞) ̸= ⊥ ∧minv(𝑞) = ⊥ then

minv(𝑞)← maxv(𝑞);
8 if ∄𝑞 LH (𝑞1, 𝑞2) ∈ 𝐿 ∧maxv(𝑞) = ⊥ ∧minv(𝑞) ̸= ⊥ then

maxv(𝑞)← minv(𝑞);
9 foreach 𝑞 LH (𝑞1, 𝑞2) ∈ 𝑇 do

10 if ∃𝑐 ∈ {𝑡1, 𝑡2} : minv(𝑐) ̸= ⊥, 𝑡 LH (𝑡1, 𝑡2) ∈ 𝐿,maxv(𝑡) = ⊥ then
maxv(𝑡)← minv(𝑐);

11 foreach 𝑙𝑖 ∈ {𝑙1, 𝑙2} : 𝑙 LH (𝑙1, 𝑙2) ∈ 𝐿,minv(𝑙) ̸= ⊥ do
12 if 𝑙𝑖 ̸= 𝑙 ∧minv(𝑙𝑖) = ⊥ then minv(𝑙𝑖)← next(minv(𝑙));

13 while minv or maxv get updated;
14 return minv ,maxv

• 𝜏 : 𝑄 ⇀ X × X = {𝑞 ↦→ [next(𝑥𝑚),maxv(𝑞)] : minv(𝑞) ≤ 𝑥𝑚 < maxv(𝑞)} contains
information about the states that had to be split due to their variable range con-
taining materialized variable, these states are targets of transitions that contain the
materialized variable in their symbol.

Utilizing the aforementioned constructs, for all 𝑞 ↦→ [𝑥𝑙, 𝑥ℎ] ∈ 𝜎:

Δ1 = {⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ LH (𝑡1, 𝑡2) : 𝑥𝑙 ̸= 𝑥ℎ, 𝑞 LH (𝑞1, 𝑞2) ∈ 𝐿 ∧ ∀𝑖 ∈ {1, 2} :

𝑡𝑖 = ⟨𝑞𝑖, 𝑥(𝑖)𝑙 , 𝑥
(𝑖)
ℎ ⟩ ∧ 𝑞𝑖 ↦→ [𝑥

(𝑖)
𝑙 , 𝑥

(𝑖)
ℎ] ∈ 𝜎}

Δ2 = {⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ 𝑎 () : 𝑞 /∈ dom(𝜏), 𝑞 𝑎 () ∈ 𝑇} ∪
{⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ LH (𝛼(𝑞1), 𝛼(𝑞2)) : 𝑞 /∈ dom(𝜏), 𝑞 LH (𝑞1, 𝑞2) ∈ 𝑇},

𝛼(𝑞𝑖) =

{︃
⟨𝑞𝑖, 𝑥(𝑖)𝑙 , 𝑥

(𝑖)
ℎ ⟩ : 𝑞𝑖 ↦→ [𝑥

(𝑖)
𝑙 , 𝑥

(𝑖)
ℎ] ∈ 𝜏 if 𝑞𝑖 ∈ dom(𝜏) ∧ next(𝑥𝑚) ∈ [𝑥

(𝑖)
𝑙 , 𝑥

(𝑖)
ℎ]

⟨𝑞𝑖, 𝑥(𝑖)𝑙 , 𝑥
(𝑖)
ℎ ⟩ : 𝑞𝑖 ↦→ [𝑥

(𝑖)
𝑙 , 𝑥

(𝑖)
ℎ] ∈ 𝜎 otherwise

Δ3 = {⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ LH, 𝑣𝑎𝑟 : 𝑥𝑚 (𝛽(𝑞1), 𝛽(𝑞2)) : 𝑞 ∈ dom(𝜏), 𝑞 LH (𝑞1, 𝑞2) ∈ 𝐿},

𝛽(𝑞𝑖) =

{︃
⟨𝑞𝑖, 𝑥(𝑖)𝑙 , 𝑥

(𝑖)
ℎ ⟩ : 𝑞𝑖 ↦→ [𝑥

(𝑖)
𝑙 , 𝑥

(𝑖)
ℎ] ∈ 𝜏 if 𝑞𝑖 ∈ dom(𝜏)

⟨𝑞𝑖, 𝑥(𝑖)𝑙 , 𝑥
(𝑖)
ℎ ⟩ : 𝑞𝑖 ↦→ [𝑥

(𝑖)
𝑙 , 𝑥

(𝑖)
ℎ] ∈ 𝜎 otherwise

Δ4 = {⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ 𝑎 () : 𝑎 ∈ {0,1}, 𝑥𝑚 ∈ [𝑥𝑙, 𝑥ℎ], 𝑞 𝑎 () ∈ Δ} ∪
{⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ ⊕arb () : 𝑥𝑚 ∈ [𝑥𝑙, 𝑥ℎ], 𝑞 ⊕𝑖 () ∈ Δ}

41

Δ1 contains self-loops of the initial states. Δ2 consists of terminating transitions from the
initial states which have no copy in target states. Transitions from Δ3 go from the original
states to their copy in the target states, are created from the self-loops found in the original
box, and are labeled with 𝑥𝑚. Δ4 is the set of arbitrary port transitions added to the source
states of transitions labeled with variable 𝑥𝑚. Now for all 𝑞 ↦→ [𝑥𝑙, 𝑥ℎ] ∈ 𝜏 (targets of the
transitions with materialized variable):

Δ5 = {⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ LH (𝛽(𝑞1), 𝛽(𝑞2)) : 𝑥𝑙 ̸= 𝑥ℎ, 𝑞 LH (𝑞1, 𝑞2) ∈ 𝐿}
Δ6 = {⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ 𝑎 () : 𝑞 𝑎 () ∈ 𝑇} ∪

{⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ LH (𝛾(𝑞1), 𝛾(𝑞2)) : 𝑞 LH (𝑞1, 𝑞2) ∈ 𝑇}

𝛾(𝑞𝑖) =

{︃
⟨𝑞𝑖, 𝑥(𝑖)𝑙 , 𝑥

(𝑖)
ℎ ⟩ : 𝑞𝑖 ↦→ [𝑥

(𝑖)
𝑙 , 𝑥

(𝑖)
ℎ] ∈ 𝜏 if 𝑞𝑖 ∈ dom(𝜏) ∧ 𝑥ℎ < 𝑥

(𝑖)
ℎ

⟨𝑞𝑖, 𝑥(𝑖)𝑙 , 𝑥
(𝑖)
ℎ ⟩ : 𝑞𝑖 ↦→ [𝑥

(𝑖)
𝑙 , 𝑥

(𝑖)
ℎ] ∈ 𝜎 otherwise

Δ5 contains copies of self-loops for the targets of the transitions with 𝑥𝑚. Δ6 is the set of
terminating transitions of the target of the 𝑥𝑚-labeled transitions. Finally, the materialized
box is ℬ𝑚 = ⟨𝑄𝑚,Σ𝑚,Δ𝑚,ℛ𝑚⟩, where:

• 𝑄𝑚 = {⟨𝑞, 𝑥𝑙, 𝑥ℎ⟩ : 𝑞 ↦→ [𝑥𝑙, 𝑥ℎ] ∈ 𝜏 ∪ 𝜎},

• Σ𝑚 = Σ⊕ ∪ {⊕arb},

• Δ𝑚 =
⋃︀6

𝑖=1Δ𝑖,

• ℛ𝑚 = {(𝑞, 𝑥𝑙, 𝑥ℎ) : 𝑞 ∈ ℛ, 𝑥𝑙 = next(𝑥𝑖𝑛)}.

After the box is materialized with regards to variable 𝑥𝑚, a two-phase search of other
boxes within it is started (which will also be referred to as “pattern finding” – finding the
ABDD patterns within the materialized box).

1. First, the transitions with materialized variable (from Δ3) are removed.
2. If ℒ(ℬ𝑚) ∖ 𝑇⊥ ⊆ ℒ(ℬ), where 𝑇⊥ = {{𝜀 ↦→ ⊕𝑖} | ⊕𝑖 ∈ Σ⊕ ∪Σ𝑚} denotes the language

of trivial trees (i.e. trees of only one node and the node is labeled with some port),
and ℬ is the box from the initial edge, then the box on the initial edge will stay as ℬ,
otherwise S.

3. Then, before the second search, transitions from Δ3 are placed back and each L

and H target state of the transition becomes the root of the box that is compared
(wrt. languages) to other boxes. So for transitions labeled LH, 𝑣𝑎𝑟 : 𝑥𝑚 leading
𝑞1, . . . , 𝑞𝑛, comparison of ℬ𝑚 rooted in 𝑞1, . . . , 𝑞𝑛 is performed. The comparison checks
if ℒ(ℬ𝑚) ∖ 𝑇⊥ ⊆ ℒ(ℬ), and similarly to the first search, if such a box ℬ ∈ Γ is found,
it will label the L or H edge in the resulting ABDD.

The whole box materialization process, including variable ranges computation, is shown
in Figure 5.4.

42

[in = x1]

[out1 = x9] [out2 = x9]

[mat = x5]

in

out1 out2

⊕1 ⊕2

L⊕

(a) Initial ABDD edge

s0

s1 s2

⊕2⊕1

[in = x1]

[out1 = x9] [out2 = x9]

[mat = x5]

(b) Box on the edge – L⊕

s0

s1 s2

⊕2⊕1

[in = x1]

[out1 = x9] [out2 = x9]

[mat = x5]

[x3, x9] [x9, x9]

[x2, x8]

(c) Variable ranges of L⊕

s0
(x2, x5)

s1
(x3, x5)

s0
(x6, x8)

s1
(x6, x9)

s2
(x9, x9)

x5

x5

⊕2⊕1

⊕a

⊕a
Δ4Δ1

Δ3

Δ5

Δ6Δ3

Δ1

Δ5

Δ4

Δ6 Δ2

(d) Box L⊕ materialized at 𝑥5

mat mat

out1 out2

in

L⊕

⊕1 ⊕2

L⊕XXX

⊕1

⊕2

[s0 (x2, x5)][s1 (x3, x5)]

(e) Modified ABDD structure

Figure 5.4: Each step of the materialization process. Firstly, (a) shows the known informa-
tion before the materialized process, i.e the initial box, and the input, output, materialized
variables. Secondly, (b) and (c) show how this information is mapped to the states of the
box and how variable ranges are computed. Most importantly, in (d), the materialized box
(with regards to given variable information) is shown. Grey markings show the types of
transitions obtained during the construction, red markings show the transitions important
during the “pattern finding” step. Note how these red transitions align with the layer of
edges above the 𝑜𝑢𝑡1 and 𝑜𝑢𝑡2 labeled nodes in (e).

5.3 Additional optimizations
Since computing ⊙-products of boxes (with their related box trees) is a costly operation,
it is undesirable to perform them during the execution of the Apply algorithm. Because
there is a finite number of Boolean operators, and a finite number of boxes, each box tree
can be precomputed and stored in some cache, ready to be instantly loaded when needed
during the algorithm. Since there are 7 boxes, and currently supported are 7 binary Boolean
operators (AND, OR, NAND, NOR, XOR, IFF, IMPLY), in total there are 73 box trees
to be computed. During Apply, when needed, the box tree cache is accessed using the
two rules on edges and the operator, and then the box tree can be processed, altering the
resulting ABDD structure.

43

Similarly, box materialization is also a demanding operation, which would hinder the
performance of Apply on ABDDs. Inspecting the properties of each box revealed that
there is also a limited number of possible patterns that can emerge from materialization
(based on the relationships between 𝑥𝑖𝑛, 𝑥𝑚, 𝑥𝑜𝑢𝑡𝑖). Box X has only 4 such patterns, boxes
L1, L0, H1, H0 have 6 different patterns, and boxes L⊕, H⊕ have 8 (so 44 in total).

For each different materialized ABDD pattern of a box ℬ, a different set of predicates
holds. These predicates describe relationships between the following pairs of variables:
(𝑥in , 𝑥𝑚), (𝑥out𝑖 , 𝑥𝑚) for 1 ≤ 𝑖 ≤ #(ℬ), (𝑥leaf , 𝑥𝑚), where (𝑥leaf is the pseudo-variable
describing the leaf level – it is next(𝑥𝑚𝑎𝑥) if 𝑥𝑚𝑎𝑥 is the largest variable in the order X. For
the purposes of ABDDs, there are two relevant predicates comparing the variables:

• 𝑥1 <1 𝑥2 ≡ 𝑥1 + 1 = 𝑥2

• 𝑥1 ≪ 𝑥2 ≡ 𝑥1 + 1 < 𝑥2

For the L⊕ box from Figure 5.4, the following predicates hold: 𝑥in ≪ 𝑥𝑚 ∧ 𝑥𝑚 ≪ 𝑥out1 ∧
𝑥𝑚 ≪ 𝑥out2 . Note that there are only the <1 and ≪ predicates used, and not their >1,≫
counterparts (so the left-hand side always features the smaller variable). This is to ensure
uniqueness of the predicate set (i.e. that there is only one way to represent the relationships
– this is important for hashing and cache lookup). If neither <1,≪ can hold with regards
to some variable, then it is assumed that ≥ holds (and the set does not include <1 or≪ for
that given relationship). The process of generating all possible sets of predicates for some
box ℬ ∈ Γ is the following:

1. Generate different variable assignments for 𝑥in , 𝑥out𝑖 , 𝑥𝑚 (and 𝑥leaf if needed, i.e. for
boxes L0, L1, H0, H1).

2. Check the “consistency” of this assignment. Inconsistent assignments either do not
warrant materialization, or cannot happen in a valid ABDD structure. The following
conditions have to hold:

• 𝑥in < 𝑥𝑚,
• ∃1 ≤ 𝑖 ≤ #(ℬ) : 𝑥out𝑖 > 𝑥𝑚,
• 𝑥leaf > 𝑥𝑚,
• all 𝑥out𝑖 are consistent with the semantics of the box ℬ (for example, in L⊕, it is

inherently required that 𝑥out1 ≥ 𝑥out2 , in H⊕ this is reversed), and
• ∀𝑥𝑗 ∈ {𝑥in , 𝑥out𝑖 : 1 ≤ 𝑖 ≤ #(ℬ)} : 𝑥𝑗 < 𝑥leaf .

3. Create a set of predicates from the consistent assignment and if such a set has not yet
been evaluated, compute a materialized box ℬ𝑚 with regards to the given assignment.

4. Create a mapping of the predicate set to the obtained ABDD pattern from ℬ𝑚. Note
that the pattern only contains symbolic variable names and not their values from the
assignment. The variables are replaced with their actual values during the traversal
of the pattern, when needed.

During the call of the Apply algorithm, sometimes a node is created which is exactly
the same as some other node already used (perhaps in one of the input ABDDs or has
already been created by the algorithm). Creating a duplicate node would be undesirable,
so for this reason a node cache is utilized during the whole algorithm (sometimes also called

44

vertex table, unique table). The index to this table has to take into account every attribute
of the ABDD node that can be used to distinguish it from other nodes. Every node 𝑛 of
the ABDD has an entry in this table that looks like this: ⟨𝑣, 𝑙,ℬ𝐿, 𝜏𝑉 ℬ𝐻 , 𝜏𝐻⟩ ↦→ 𝑛, where:

• 𝑣 ∈ X ∪ {𝑥𝑛+1} = 𝑛.var ,

• 𝑙 ∈ {0, 1,⊥} is the leaf value of node 𝑛 (⊥ in case of inner nodes),

• ℬ𝐿 = 𝑛.lowbox ∈ Γ ∪ {S} is the box used on the low edge of the node,

• 𝜏𝐿 = 𝑛.low is the tuple ⟨𝑛1, . . . , 𝑛#(ℬ𝐿)⟩ that are the target nodes of the low edge

• ℬ𝐻 = 𝑛.highbox , and 𝜏𝐻 are defined analogously to ℬ𝐿, 𝜏𝐿.

Usually, during Apply, dynamic programming technique can be utilized in the form of
call cache. The call cache stores results of different Apply calls in hopes that when Apply
reaches the same pair of edges (which is possible since ABDD is a DAG), the result does
not have to be computed again and can be directly returned. Call cache stores entries in
the form (⊙, 𝑣, 𝑒1, 𝑒2) ↦→ 𝑒𝑅, where ⊙ is a binary Boolean operator, 𝑣 ∈ X is the variable of
the node from which the apply on the two edges 𝑒1, 𝑒2 is called. 𝑒1, 𝑒2, 𝑒𝑅 are ABDD edges
in the form ⟨ℬ, ⟨𝑛1, . . . , 𝑛#(ℬ)⟩⟩.

Because negation has a different arity than other supported Boolean operators, there is
also a negation cache utilized in the algorithm. It has entries in the form 𝑛 ↦→ 𝑚, where 𝑛,𝑚
are ABDD nodes. Negation is implemented as a recursive traversal of the subtree rooted in
node 𝑛 which just switches terminal nodes and negates boxes on edges (L1 ↔ L0, H1 ↔ H0),
while checking newly created nodes against the node cache.

In some cases, an unnecessary node materialization or box tree traversal can be skipped,
when one of the edges describes a trivial Boolean function (true or false). Knowing this,
the evaluation from this point can be simplified. Either a trivial function is returned (⟨X,0⟩
for false, ⟨X,1⟩ for true – short circuit evaluation), or one of the edges is returned directly,
or in a negated form.

5.4 Complete algorithm
Since all important aspects of Apply have been explained, now a complete overview of the
Apply algorithm on ABDDs can be presented. Algorithm 4 describes the recursive function
Apply.

First, the call cache is checked, then a short-circuit evaluation is attempted. When
the short-circuit evaluation cannot be performed (when no edge describes a trivial Boolean
function), it returns an empty tuple of states. Otherwise the result of short-circuiting is
cached and returned. Afterwards, node materialization happens (if needed). Firstly, the
algorithm computes materialization variable 𝑥𝑚, which is the minimum variable of target
nodes, and then, comparing it to the maximum variable of either edge targets, the algorithm
attempts to materialize the given edge.

The function materialize() computes the set of predicates based on the variable in edge’s
source node 𝑛𝑖, variables in edge’s target nodes 𝑒𝑖.𝑡𝑎𝑟𝑔𝑒𝑡, and the materialized variable 𝑥𝑚.
Then, based on the edge’s box 𝑒𝑖.𝑟𝑢𝑙𝑒 and the obtained predicate set, it selects the precom-
puted ABDD pattern from the cache and by traversing the pattern, it creates the necessary
edges and nodes (replacing the symbolic names of the nodes with correct variables, or leaf
nodes). A new edge (which would stem from the node 𝑛𝑖) is created, which is then used in

45

Algorithm 4: ABDD_apply_from function
Input: Boolean binary operator ⊙, variable 𝑥𝑣 ∈ X, two ABDD edges 𝑒1, 𝑒2, nodes

𝑛1, 𝑛2 from which edges 𝑒1, 𝑒2 start
Result: ABDD edge 𝑒𝑅 = ⟨ℬ𝑅, ⟨𝑛1, . . . , 𝑛𝑘⟩⟩, where 𝑘 = #(ℬ)

1 if call_cache[⊙, 𝑥𝑣, 𝑒1, 𝑒2] ↦→ 𝑒𝑅 then return 𝑒𝑅;
2 ℬ𝑅, 𝜏𝑅 ← 𝑠ℎ𝑜𝑟𝑡_𝑐𝑖𝑟𝑐𝑢𝑖𝑡_𝑒𝑣𝑎𝑙(⊙, 𝑒1, 𝑒2);
3 if 𝜏𝑅 ̸= ⟨⟩ then
4 call_cache[⊙, 𝑥𝑣, 𝑒1, 𝑒2]← ⟨ℬ𝑅, 𝜏𝑅⟩;
5 return ℬ𝑅, 𝜏𝑅
6 𝑥𝑚 = min{𝑛.var : 𝑛 ∈ 𝑒1.𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ∨ 𝑛 ∈ 𝑒2.𝑡𝑎𝑟𝑔𝑒𝑡𝑠};
7 if 𝑥𝑚 ̸= max{𝑛.var : 𝑛 ∈ 𝑒1.𝑡𝑎𝑟𝑔𝑒𝑡𝑠} then
8 𝑒𝑚 = materialize(𝑛1, 𝑒1, 𝑥𝑚);
9 return ABDD_apply_from(⊙, 𝑥𝑚, 𝑒𝑚, 𝑒2, 𝑛1, 𝑛2)

10 if 𝑥𝑚 ̸= max{𝑛.var : 𝑛 ∈ 𝑒2.𝑡𝑎𝑟𝑔𝑒𝑡𝑠} then
11 𝑒𝑚 = materialize(𝑛2, 𝑒2, 𝑥𝑚);
12 return ABDD_apply_from(⊙, 𝑥𝑚, 𝑒1, 𝑒𝑚, 𝑛1, 𝑛2)

13 if ∀𝑛 : 𝑛 ∈ 𝑒1.𝑡𝑎𝑟𝑔𝑒𝑡 ∨ 𝑛 ∈ 𝑒2.𝑡𝑎𝑟𝑔𝑒𝑡 : 𝑛.leaf ̸= ⊥ then
14 𝑏 = box_tree_cache[⊙, 𝑒1.𝑟𝑢𝑙𝑒, 𝑒2.𝑟𝑢𝑙𝑒];
15 𝑥𝑠 = min{𝑛1.var , 𝑛2.var};
16 ℬ𝑅, 𝜏𝑅 = process_box_tree_leaves(𝑏,⊙, 𝑥𝑚, 𝑒1, 𝑒2, 𝑥𝑠);
17 call_cache[⊙, 𝑥𝑚, 𝑒1, 𝑒2]← ⟨ℬ𝑅, 𝜏𝑅⟩;
18 return ℬ𝑅, 𝜏𝑅
19 𝑏 = box_tree_cache[⊙, 𝑒1.𝑟𝑢𝑙𝑒, 𝑒2.𝑟𝑢𝑙𝑒];
20 𝑥𝑠 = min{𝑛1.var , 𝑛2.var};
21 ℬ𝑅, 𝜏𝑅 = process_box_tree(𝑏,⊙, 𝑥𝑚, 𝑒1, 𝑒2, 𝑥𝑠);
22 call_cache[⊙, 𝑥𝑚, 𝑒1, 𝑒2]← ⟨ℬ𝑅, 𝜏𝑅⟩;
23 return ℬ𝑅, 𝜏𝑅

a subsequent Apply call. Note that materialization does not actually modify the structure
of any of the input ABDDs, it merely simulates the creation of edges and nodes on the call
stack.

After materialization is done, if both edge targets contain only leaves, a special way of
processing box tree is called, process_box_tree_leaves(). Newly created nodes of a boxtree
are labeled, starting from variable 𝑥𝑠. The procedure does not invoke any further Apply
calls, simply combining the values of leaf nodes using ⊙ Boolean operator.

If edge targets are not strictly leaves, a similar function is called, process_box_tree().
This function, when it encounters a set recurse flag in some box tree node, will call Apply on
the nodes specified by idx1 , idx2 . Notably, function process_box_tree() (see Algorithm 5)
uses two variables 𝑥𝑠, 𝑥𝑣. 𝑥𝑠 labels the variable of the source nodes and is used to label
newly created nodes of the box tree. 𝑥𝑣 labels the target nodes (they should have the same
variable thanks to node materialization) and are used for propagating through other Apply
calls. Demonstration of process_box_tree() is in Figure 5.5.

One of the strengths of the ABDD’s implementation of Apply is that based on the
nature of reduction rules, performing box operations beforehand can reveal some interesting
way of short-circuiting the result. For example, L0 AND H0 leads to 0. This case is not

46

Algorithm 5: process_box_tree function
Input: node of a boxtree 𝑏, Boolean binary operator ⊙, variable 𝑥𝑡 ∈ X labeling

target nodes, two ABDD edges 𝑒1, 𝑒2, variable 𝑥𝑠 ∈ X labeling the source
nodes of edges 𝑒1, 𝑒2

Result: ABDD edge 𝑒𝑅 = ⟨ℬ𝑅, ⟨𝑟1, . . . , 𝑟𝑘⟩⟩, where 𝑘 = #(ℬ)
1 if 𝑏 is a leaf node then
2 if 𝑏.box ∈ {0,1} then return ⟨X, 𝑏.box ⟩;
3 ℬ ← 𝑏.𝑏𝑜𝑥;
4 foreach 𝑝𝑐𝑖 ∈ 𝑏.info do
5 if 𝑝𝑐𝑖.recursion then
6 𝑛1 = 𝑒1.target [𝑝𝑐𝑖.𝑖𝑑𝑥1], 𝑛2 = 𝑒2.target [𝑝𝑐𝑖.𝑖𝑑𝑥2];
7 𝑒𝑙1 = ⟨𝑛1.lowbox , 𝑛1.low⟩, 𝑒𝑙2 = ⟨𝑛2.lowbox , 𝑛2.low⟩;
8 𝑒ℎ1 = ⟨𝑛1.highbox , 𝑛1.high⟩, 𝑒ℎ2 = ⟨𝑛2.highbox , 𝑛2.high⟩;
9 ℬ𝐿, 𝜏𝐿 = ABDD_apply_from(⊙, 𝑥𝑡, 𝑒𝑙1 , 𝑒𝑙2 , 𝑛1, 𝑛2);

10 ℬ𝐻 , 𝜏𝐻 = ABDD_apply_from(⊙, 𝑥𝑡, 𝑒ℎ1 , 𝑒ℎ2 , 𝑛1, 𝑛2);
11 𝑟𝑖 = ⟨𝑥𝑡,ℬ𝐿, 𝜏𝐿,ℬ𝐻 , 𝜏𝐻⟩;
12 node_cache.𝑐ℎ𝑒𝑐𝑘(𝑟𝑖);
13 else if 𝑝𝑐𝑖.𝑖𝑑𝑥1 ̸= ⊥ then
14 𝑟𝑖 = 𝑝𝑐𝑖.negation ? negate(𝑒1.target [𝑝𝑐𝑖.𝑖𝑑𝑥1]) : 𝑒1.target [𝑖.𝑖𝑑𝑥1];
15 else if 𝑝𝑐𝑖.𝑖𝑑𝑥2 ̸= ⊥ then
16 𝑟𝑖 = 𝑝𝑐𝑖.negation ? negate(𝑒2.target [𝑝𝑐𝑖.𝑖𝑑𝑥2]) : 𝑒2.target [𝑝𝑐𝑖.𝑖𝑑𝑥2];
17 return ⟨ℬ, ⟨𝑟1, . . . 𝑟#(ℬ)⟩⟩
18 ℬ𝐿, 𝜏𝐿 = process_box_tree(𝑏.𝑙𝑜𝑤,⊙, 𝑥𝑡, 𝑒1, 𝑒2,next(𝑥𝑠));
19 ℬ𝐻 , 𝜏𝐻 = process_box_tree(𝑏.ℎ𝑖𝑔ℎ,⊙, 𝑥𝑡, 𝑒1, 𝑒2,next(𝑥𝑠));
20 𝑟 = ⟨𝑥𝑠,ℬ𝐿, 𝜏𝐿,ℬ𝐻 , 𝜏𝐻⟩;
21 node_cache.𝑐ℎ𝑒𝑐𝑘(𝑟);
22 return ⟨S, ⟨𝑟⟩⟩

detected instantly in other Apply implementations (that utilize both of these rules, such
as ESRBDDs and CESRBDDs), where they are first expanded, then short-circuited, and
during the phase of cofactor merging the resulting node is detected as reducible by some
pattern, and perhaps after that the edge ⟨X,0⟩ is returned.

The main drawback of Apply on ABDDs is that the result is not canonical. Currently,
there is no way to detect if a node is reducible by some pattern. For example, in BDDs,
after low and high cofactors are created, a check is performed. If for node 𝑛 it holds that
𝑙𝑜𝑤(𝑛) = ℎ𝑖𝑔ℎ(𝑛), node 𝑛 is redundant, can be deleted, and either 𝑙𝑜𝑤(𝑛) or ℎ𝑖𝑔ℎ(𝑛)
is returned instead. In this way, the Apply procedure already ensures the result will be
canonical. Current ABDD implementation does not possess such mechanism. During the
algorithm, several reducible nodes can be created, and only after the initial recursive Apply
call is done, the result will be reduced (using the canonization algorithms – unfolding,
normalization, folding). There is no known systematic way of checking whether or not the
newly created nodes or patterns are reducible. Even though for some reduction rules, the
checking is simple (BDDs or ZBDDs for example), the problem becomes challenging if it
needs to hold up even when adding new reduction rules, or even just changing the order
of the box reductions, which is the feature of ABDDs. To ensure canonicity, the cofactor
merging process should take into account which boxes are used, what is their reduction

47

b: xv d: xv

a: xs c: xs

L1
H⊕

e: xv

⊕1 ⊕2

(a) Input edges

-

H⊕ L⊕
[⊕1 : (--,1,--,--)]

[⊕2 : (--,2,--,--)]

[⊕1 : (--,2,--,--)]

[⊕2 : (1,2,--,R)]

(b) Box tree with relevant info

S

f: xs+1

d: xv e: xv

g: xv

H⊕
L⊕

apply() apply()

⊕1 ⊕2 ⊕1

⊕2

(c) Created pattern

Figure 5.5: Demonstration of how process_box_tree() works. (a) shows the initial two
edges. (b) shows the box tree that is fetched from cache along with the information about
ports as tuples (the first two items are indices for ports of the initial two edges, the third
item is the negation flag, the fourth item is the recursion flag). (c) shows the ABDD
pattern that is produced by the procedure, nodes in grey are created by the algorithm. The
returned edge is the short one on top. Note the two Apply calls used to build the node 𝑔
on the bottom right.

order (box order Γ), whether or not some target nodes are terminals or not, and in case of
boxes with multiple ports, what are the variables of the nodes.

48

Chapter 6

Experimental Results

The following chapter overviews the implementation in brief and mainly discusses the
achieved results. Some of the results were originally presented in [24] (BLIF and DIMACS
node counts). Additional benchmarks were analyzed to highlight some potential drawbacks
of ABDDs. On top of this, an experiment was performed to highlight how representations
of certain Boolean functions using different BDD models grow in size after iteratively using
Apply.

Implementation notes

Building on the work from [24], which was implemented in Python [23] as a proof of concept
of canonization algorithms (and contains some important functionality for working with tree
automata), the implementation of ABDD Apply was also done in Python (3.12.3), on top
of the source code from the initial work. For debugging and presentation purposes, the
graphviz library [18] was utilized to convert instances of tree automata, UBDAs, and
ABDDs into images in DOT format [14]. Python allows for quick prototyping, which was
especially useful during implementation of materialization, which went through multiple
stages before a working version was obtained. However, it has a major drawback, which is its
memory footprint and performance (especially noticeable during canonization algorithms,
like normalization and folding). For these reasons, not many larger benchmarks could be
evaluated (larger than a few tens of thousands), which was also the case in the initial thesis.
The possible improvements will be discussed later.

The Apply algorithm is implemented in the apply/ module, which contains three sub-
modules:

• box_algebra/ – pregenerating all box ⊙-products,

• materialization/ – pregenerating all pairs of predicate sets and materialized pat-
terns for each used box, and

• pregenerated/ – source files generated by the above-mentioned modules contain-
ing box_tree_cache and materialization_recipes (which explain how to create
ABDD sub-patterns, given a box and a set of predicates, i.e. “ingredients”).

The representations in different BDD models were obtained using the same canonization
algorithms as ABDDs, just with different box orders: BDDs (X), ZBDDs (H0), TBDDs
(X, H0), CBDDs (X, H⊕), CZDDs (H0, X), ESRBDDs (L0, H0, X), ABDDs (see Figure 4.1).

49

Even though the reduction rules described by boxes are the same as the ones used in
any of the mentioned models, the node counts obtained after the canonization may slightly
differ from the node counts obtained using the original implementations of the models.

• Tagged edges in TBDDs [34] can combine ABDDs’ two reduced edges (between 3
nodes) into one edge (between two nodes) which uses a “tag”.

• CBDDs and CZDDs [8] store the information about reduction chains within the nodes
themselves, not the edges (as in ABDDs), so the reduction information about the
second rule would be inside the node.

• ESRBDDs’ [4] reduction algorithm does not describe the order in which the 3 reduc-
tion rules are applied, so that might also not reflect the exact node counts as in the
original implementation. The reduction algorithm (in other models, too) probably
explores the graph’s structure bottom-up, while the folding algorithm used during
ABDD canonization works top-down, which is another difference.

Benchmarks description

Three types of benchmarks were used to compare the models:

• hardware circuits from LGSynth91 [38] in Berkeley Logic Interchange Format [5]
(BLIF), downloaded from [16] – input BDDs were built using the BuDDy library [33],

• logic formulae in the DIMACS format from SATLIB (1000 CNF instances, satisfiable,
20 variables, 91 clauses), downloaded from [30], and

• 𝑁 -queens problem instances, where 𝑁 ∈ {4, 5, 6, 7, 8}, built using [32].

These benchmarks were chosen to facilitate best cases of use for different models. In the
hardware circuits, the X rule (BDDs) is more advantageous than H0 (ZBDDs). In 𝑁 -queens
problems, the opposite is true. 𝑁 -queens is the ideal scenario for choosing ZBDDs, as it
fits all the criteria for efficient representation in that model (see Section 2.6).

6.1 Node count comparison
On the analyzed benchmarks, in general, ABDDs performed the best (especially the hard-
ware circuit benchmarks). In some cases of DIMACS benchmarks, CZDDs and ZBDDs
worked better, where using H0 reduction before L0 was more efficient. The same phe-
nomenon can be seen also in 𝑁 -queens instances. All models that start their folding with
the H0 rule (ZBDD, TBDD, CZDD) outperform every other model. Since the reductions in
ABDDs started with the L0 rule, which does not naturally work well with the character of
the benchmarks, the reduction effect was weaker, but still significantly stronger than using
just the “don’t care” rule of the classic BDDs. In ABDDs, during folding, L0 reductions
were applied to many places where using H0 would be more efficient, so when it came to
trying out H0 reductions, most attempts failed, which led to the higher node count. This is
the drawback of the way folding is implemented (trying one rule everywhere before trying
another rule).

50

101 102 103 104 105

BDD node count

101

102

103

104

105

A
B

D
D

n
od

e
co

u
nt

blif

cnf

nqueens

101 102 103 104 105

ZBDD node count

101

102

103

104

105

A
B

D
D

n
od

e
co

u
nt

blif

cnf

nqueens

101 102 103 104 105

TBDD node count

101

102

103

104

105

A
B

D
D

n
od

e
co

u
nt

blif

cnf

nqueens

101 102 103 104 105

CBDD node count

101

102

103

104

105

A
B

D
D

n
od

e
co

u
nt

blif

cnf

nqueens

101 102 103 104 105

CZDD node count

101

102

103

104

105

A
B

D
D

n
od

e
co

u
nt

blif

cnf

nqueens

101 102 103 104 105

ESRBDD node count

101

102

103

104

105

A
B

D
D

n
od

e
co

u
nt

blif

cnf

nqueens

Figure 6.1: Node count comparison of BLIF, DIMACS, and 𝑁 -queens benchmarks.

6.2 Examining the growth of progressive Apply usage
Since ABDDs are currently implemented as a Python prototype (proof of concept), and
most of the libraries of other models utilize highly optimized, multi-threaded C/C++ code,
comparing the runtime of ABDD Apply implementation to those would not lead to interest-
ing results. However, what can be compared is how different models grow in node counts,
when multiple Apply operations are used to build a function (such as when using conjunc-
tion of clauses during the building of a CNF DIMACS benchmark). The experiment was
designed in the following way. After each clause of some DIMACS CNF benchmark was
joined using the ABDD’s Apply implementation, the size of the canonical form of every
model was measured. The clauses were processed and merged with the result until the
canonization timed out. If the time out happened after 20 clauses were processed, then
only the records of the first 20 Boolean functions’ sizes of a partially processed DIMACS
benchmark were recorded.

The following experiment showed that ABDDs kept the node counts the lowest during
the process. Usually with these benchmarks, after all clauses are processed, the formula is
satisfiable only for a few assignments, i.e. the graph has only a few paths to terminal nodes
and its representation is small. However, before the final representation of a formula is
built, the graph first quickly grows in size, and after around 20-40 clauses are analyzed, the
size starts to decrease as many clauses cancel out and simplify the representation. During
the graph’s growth, especially the “middle part” of the graph allowed more and more places
for L⊕, H⊕ reductions, which are not included in other models (except CBDDs in a sense).
This explains why ABDDs had the lowest aggregated node counts during the whole process,

51

followed by CBDDs. ZBDDs performed the worst in this case. First 100 of the DIMACS
benchmarks (the same ones as in the previous experiment) were used in this experiment.

The graphs in Figure 6.2 show the aggregated node counts (across all iterations of
producing one benchmark, until a 50 second timeout during canonization was reached)
of all models compared to ABDDs. The Figures 6.3 and 6.4 then show how the node
count develops across iterations of one fully-built DIMACS benchmark. Overall, ABDDs
performed best, CBDDs were 2nd most compact (thanks to the utilization of OR-chains,
which are simulated using the H⊕ box). Finally, Table 6.1 contains the aggregated results
of all experiments (BLIF, DIMACS, 𝑁 -queens benchmarks, and aggregated node counts
comparing progressive Apply usage)

103 104 105

BDD node count

103

104

105

A
B

D
D

n
od

e
co

u
nt

103 104 105

ZBDD node count

103

104

105

A
B

D
D

n
od

e
co

u
nt

103 104 105

TBDD node count

103

104

105

A
B

D
D

n
od

e
co

u
nt

103 104 105

CBDD node count

103

104

105

A
B

D
D

n
od

e
co

u
nt

103 104 105

CZDD node count

103

104

105

A
B

D
D

n
od

e
co

u
nt

103 104 105

ESRBDD node count

103

104

105

A
B

D
D

n
od

e
co

u
nt

Figure 6.2: Node counts of the 100 tested CNF DIMACS benchmarks aggregated as more
clauses were processed. Each dot represents one benchmark, but sums node counts during
processing of clauses (essentially each iteration can represent a different Boolean function,
timeout usually happened after 15-20 iterations).

52

Table 6.1: Summary of aggregated node counts for each benchmark type. The row labeled
𝑐-DIMACS shows the aggregated node counts of the cumulative Apply usage during the
build of the 100 DIMACS benchmarks. The last row shows the percentage (averaged over
each benchmark) of nodes that were reduced by using ABDD as opposed to the particular
model during the cumulative Apply usage.

BDD ZBDD TBDD CZDD CBDD ESRBDD ABDD
C432 2009 2821 2007 2023 1578 1958 1438
C880 70645 94020 70645 70660 62608 70327 61414
C1355 263520 255456 263520 255392 258203 255360 231640
C1908 75111 72383 75095 70469 61918 72587 56598
DIMACS 45517 28591 45041 27845 42002 27676 26713
𝑁 -queens 3890 648 648 648 806 1033 1033
𝑐-DIMACS 560790 633361 560709 497927 479900 496740 432260
Improvement 20.86 % 33.08 % 20.85 % 12.51 % 10.11 % 12.41 % -

0 10 20 30 40 50 60 70 80 90
Iteration

0

200

400

600

800

1000

N
od

e
C

ou
nt

BDD

ABDD

0 10 20 30 40 50 60 70 80 90
Iteration

0

200

400

600

800

1000

N
od

e
C

ou
nt

ZBDD

ABDD

0 10 20 30 40 50 60 70 80 90
Iteration

0

200

400

600

800

1000

N
od

e
C

ou
nt

TBDD

ABDD

0 10 20 30 40 50 60 70 80 90
Iteration

0

200

400

600

800

1000

N
od

e
C

ou
nt

CBDD

ABDD

0 10 20 30 40 50 60 70 80 90
Iteration

0

200

400

600

800

1000

N
od

e
C

ou
nt

CZDD

ABDD

0 10 20 30 40 50 60 70 80 90
Iteration

0

200

400

600

800

1000

N
od

e
C

ou
nt

ESRBDD

ABDD

Figure 6.3: An overview of the graph size development of one DIMACS benchmark
(uf20-011) after clauses were progressively merged with the result.

0 10 20 30 40 50 60 70 80 90
Iteration

0

500

1000

1500

2000

2500

N
od

e
C

ou
nt

unreduced

ABDD

Figure 6.4: Graph size development during building the DIMACS benchmark (uf20-011)
which aims to compare the reduced (ABDD) and unreduced (before canonization) results
of Apply.

53

Chapter 7

Conclusion

This thesis expands on the initial work on automata-based binary decision diagrams [24]
where the data structure was first introduced, along with canonization procedures needed
to obtain a reduced (or canonical) form. One major drawback of the original work was
that the process of combining two (or more) ABDDs using Boolean operators (function
Apply) required unfolding the structure and unwinding the loops, making the worst case
complexity exponential (with regards to the number of variables).

The work presented here makes the complexity of the Apply algorithm only depend
on the graph sizes of the two input Boolean functions represented as ABDDs. The thesis
explains how the algorithm works, the techniques used that make it possible to directly
combine the reduction rules without needing to expand the structure of the inputs, such
that an increase in the node count proportional to the number of variables skipped is
avoided.

The current approach keeps the reduction rates consistent with the results from [24].
However, one of the major drawbacks is that the proposed implementation of Apply lacks
mechanisms for on-the-fly canonization (i.e. reduction of the newly introduced nodes). The
obtained result has to undergo the canonization process (unfolding, normalization, folding),
which comes with its own drawbacks.

The automata-based framework is a novel approach and shows promise, yielding around
10-20% better reduction rates than the most popular decision diagram models (BDDs,
ZBDDs). Since the complexity of Apply is proportional to the sizes of the input graphs, in
theory, Apply on ABDDs should potentially outperform these models. The main feature
of ABDDs is the fact that they are flexible, i.e. allow for introduction of new rules, and
changing the order of existing rules, which can produce even better results for specific cases.
These factors make ABDDs an interesting area of research.

7.1 Future work
The main drawback of ABDD Apply is the need for post-hoc canonization. Finding a way
to perform the canonization on-the-fly, such that when a node is created, along with its low
and high edges, some systematic check could be performed. This check would try to search
for an equivalent, canonical representation for the newly created node, and if the search is
successful, then the canonical representation is returned (which should avoid unnecessary
growth of the result, as shown in Figure 6.4). For efficiency, all these reducible patterns

54

with their canonical counterparts should also be precomputed. Right now, it is unclear how
such a systematic way of enumerating these reducible patterns would work.

While ABDDs have potential to efficiently reduce the size of binary decision diagrams,
there is a lot of room for improvements in terms of performance. Implementing the frame-
work in a language better suited for high performance, such as C/C++, along with utilizing
low-level optimization techniques, improving memory performance, and using better data
structures, would be a big step forward in making ABDDs more usable. Better performance
would also allow for testing on larger and more diverse set of benchmarks.

One of the key drawbacks of the automata-based approach is the complexity of canon-
ization algorithms, especially high memory and performance requirements of normalization
(a bottom-up determinization with regards to variables). Furthermore, utilizing different
order of reduction rules during folding for different types of benchmarks could also lead to
better results.

Since ABDDs provide a framework in which it is possible to introduce new reduction
rules, analyzing benchmarks and finding new reducible patterns and specialized rules for
them is another possible upgrade.

One of the latest models, CESRBDDs (BDDs with complemented edges and edge-
specified reductions [3]), unify nodes with the same meaning (i.e. that represent the same
Boolean function 𝑓) along with nodes with the exact opposite meaning (representing their
negation ¬𝑓). Edges in such models then utilize complement bits, which determine the
interpretation of the edge’s target node – either its direct or negated semantics. Currently,
ABDDs do not support complemented edges. Implementing complemented edges and merg-
ing nodes with opposite semantics is thereby yet another possible way of improving ABDDs
which would require revisiting canonization algorithms (especially normalization) to some-
how keep information about negation flags for each state from the state sets during the
determinization process.

Additionally, there are many other useful operations that manipulate BDDs in practical
applications, such as in symbolic model checking, etc. There are also algorithms that
reorder variables (such as sifting [29]), directly modifying the BDD structure while retaining
canonicity. Providing algorithms for these operations on ABDDs is also a potential area of
focus, as is extending ABDDs to include multiple terminal nodes (like in MTBDDs).

55

Bibliography

[1] Abdulla, P. A.; Chen, Y.-F.; Holík, L.; Mayr, R. and Vojnar, T. When
Simulation Meets Antichains. In: Esparza, J. and Majumdar, R., ed. Tools and
Algorithms for the Construction and Analysis of Systems – 16th International
Conference, TACAS 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings. Springer, 2010, p. 158–174. ISBN 978-3-642-12001-5. Available at:
https://doi.org/10.1007/978-3-642-12002-2_14.

[2] Akers. Binary Decision Diagrams. IEEE Transactions on Computers, 1978, C-27,
no. 6, p. 509–516. DOI: 10.1109/TC.1978.1675141. Available at:
https://ieeexplore.ieee.org/document/1675141.

[3] Babar, J.; Ciardo, G. and Miner, A. CESRBDDs: binary decision diagrams with
complemented edges and edge-specified reductions. International Journal on
Software Tools for Technology Transfer. Springer Science and Business Media LLC,
february 2022, vol. 24, no. 1, p. 89–109. DOI: 10.1007/s10009-021-00640-0. ISSN
1433-2787. Available at: http://dx.doi.org/10.1007/s10009-021-00640-0.

[4] Babar, J.; Jiang, C.; Ciardo, G. and Miner, A. Binary Decision Diagrams with
Edge-Specified Reductions. In: Vojnar, T. and Zhang, L., ed. Tools and
Algorithms for the Construction and Analysis of Systems. Cham: Springer
International Publishing, 2019, p. 303–318. ISBN 978-3-030-17465-1.

[5] Berkeley Logic Interchange Format (BLIF). 1992. University of California, Berkeley.
Available at: https://course.ece.cmu.edu/~ee760/760docs/blif.pdf.

[6] Bollig, B. and Wegener, I. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers, 1996, vol. 45, no. 9, p. 993–1002.
DOI: 10.1109/12.537122. Available at:
https://ieeexplore.ieee.org/document/537122.

[7] Boolean Function. Encyclopedia of Mathematics. Available at:
http://encyclopediaofmath.org/index.php?title=Boolean_function&oldid=44593.
Adapted from Encyclopedia of Mathematics – ISBN 1402006098.

[8] Bryant, R. E. Chain Reduction for Binary and Zero-Suppressed Decision Diagrams.
In: Beyer, D. and Huisman, M., ed. Tools and Algorithms for the Construction and
Analysis of Systems – 24th International Conference, TACAS 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I. Springer, 2018, vol.

56

https://doi.org/10.1007/978-3-642-12002-2_14
https://ieeexplore.ieee.org/document/1675141
http://dx.doi.org/10.1007/s10009-021-00640-0
https://course.ece.cmu.edu/~ee760/760docs/blif.pdf
https://ieeexplore.ieee.org/document/537122
http://encyclopediaofmath.org/index.php?title=Boolean_function&oldid=44593

10805, p. 81–98. Lecture Notes in Computer Science. ISBN 978-3-319-89959-6.
Available at: https://doi.org/10.1007/978-3-319-89960-2_5.

[9] Bryant, R. E. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 1986, C-35, no. 8, p. 677–691. DOI:
10.1109/TC.1986.1676819. Available at:
https://ieeexplore.ieee.org/document/1676819.

[10] Bryant, R. E. Binary Decision Diagrams: An Algorithmic Basis for Symbolic Model
Checking. In: Clarke, E. M.; Henzinger, T. A.; Veith, H. and Bloem, R.,
ed. Handbook of model checking. 1st ed. Basel, Switzerland: Springer International
Publishing, June 2018, p. 191–218. ISBN 978-3-319-10575-8. Available at:
https://www.cs.cmu.edu/~bryant/pubdir/hmc-bdd18.pdf.

[11] Chaki, S.; Gurfinkel, A. and Strichman, O. Decision diagrams for linear
arithmetic. In: 2009 Formal Methods in Computer-Aided Design. 2009, p. 53–60.
Available at: https://ieeexplore.ieee.org/document/5351143.

[12] Comon, H.; Dauchet, M.; Gilleron, R.; Löding, C.; Jacquemard, F. et al. Tree
Automata Techniques and Applications. 2007. Available at:
http://www.grappa.univ-lille3.fr/tata.

[13] Coudert, O. Solving graph optimization problems with ZBDDs. In: Proceedings
European Design and Test Conference. ED & TC 97. 1997, p. 224–228. Available at:
https://ieeexplore.ieee.org/document/582363.

[14] Graphviz Project. DOT language documentation. 2025. Available at:
https://graphviz.org/doc/info/lang.html.

[15] Een, N.; Mishchenko, A. and Sörensson, N. Applying Logic Synthesis for
Speeding Up SAT. In: Marques Silva, J. and Sakallah, K. A., ed. Theory and
Applications of Satisfiability Testing – SAT 2007. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, p. 272–286. ISBN 978-3-540-72788-0. Available at:
https://people.eecs.berkeley.edu/~alanmi/publications/2007/sat07_map.pdf.

[16] Fišer, P. and Schmidt, J. A Comprehensive Set of Logic Synthesis and
Optimization Examples. In: Proceedings of the 12th International Workshop on
Boolean Problems (IWSBP). Freiberg, Germany: Freiberg University of Mining and
Technology, Institute of Computer Science, September 2016, p. 151–158. ISBN
9783860125403. Available at: https://ddd.fit.cvut.cz/www/prj/Benchmarks/.

[17] Friedman, S. and Supowit, K. Finding the optimal variable ordering for binary
decision diagrams. IEEE Transactions on Computers, 1990, vol. 39, no. 5, p. 710–713.
DOI: 10.1109/12.53586. Available at: https://ieeexplore.ieee.org/document/53586.

[18] Graphviz: Python interface for Graphviz DOT language. 2025. Available at:
https://pypi.org/project/graphviz/.

[19] James, G.; Witten, D.; Hastie, T. and Tibshirani, R. An introduction to
statistical learning. 2nd ed. New York, NY: Springer, 2013. Available at: https:
//www.karlin.mff.cuni.cz/~pesta/NMFM334/StatLearning/Book2nd/ISLRv2_website.pdf.

57

https://doi.org/10.1007/978-3-319-89960-2_5
https://ieeexplore.ieee.org/document/1676819
https://www.cs.cmu.edu/~bryant/pubdir/hmc-bdd18.pdf
https://ieeexplore.ieee.org/document/5351143
http://www.grappa.univ-lille3.fr/tata
https://ieeexplore.ieee.org/document/582363
https://graphviz.org/doc/info/lang.html
https://people.eecs.berkeley.edu/~alanmi/publications/2007/sat07_map.pdf
https://ddd.fit.cvut.cz/www/prj/Benchmarks/
https://ieeexplore.ieee.org/document/53586
https://pypi.org/project/graphviz/
https://www.karlin.mff.cuni.cz/~pesta/NMFM334/StatLearning/Book2nd/ISLRv2_website.pdf
https://www.karlin.mff.cuni.cz/~pesta/NMFM334/StatLearning/Book2nd/ISLRv2_website.pdf

[20] Larsen, K. G.; Pearson, J.; Weise, C. and Yi, W. Clock difference diagrams.
Nordic J. of Computing. FIN: Publishing Association Nordic Journal of Computing,
september 1999, vol. 6, no. 3, p. 271–298. DOI: 10.5555/774455.774459. ISSN
1236-6064. Available at: https:
//vbn.aau.dk/files/425046823/CDD_26pages_nordic_journal_of_computing_1999.pdf.

[21] Lee, C. Y. Representation of switching circuits by binary-decision programs. The
Bell System Technical Journal, 1959, vol. 38, no. 4, p. 985–999. DOI:
10.1002/j.1538-7305.1959.tb01585.x. Available at:
https://ieeexplore.ieee.org/document/6768525.

[22] Liaw, H.-T. and Lin, C.-S. On the OBDD-representation of general Boolean
functions. IEEE Transactions on Computers, 1992, vol. 41, no. 6, p. 661–664. DOI:
10.1109/12.144618. Available at: https://ieeexplore.ieee.org/document/144618.

[23] Maťufka, J. Automata-based binary decision diagram implementation GitHub
repository. 2025. Available at: https://github.com/Jany26/tree-aut-lib.

[24] Maťufka, J. New Techniques for Compact Representation of Boolean Functions.
Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Ondřej Lengál, Ph.D. Available at
https://www.vut.cz/en/students/final-thesis/detail/146866.

[25] Minato, S.-i. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In: Proceedings of the 30th International Design Automation Conference.
New York, NY, USA: Association for Computing Machinery, 1993, p. 272–277. DAC
’93. ISBN 0897915771. Available at: https://doi.org/10.1145/157485.164890.

[26] Minato, S.-i. Zero-suppressed BDDs and their applications. International Journal
on Software Tools for Technology Transfer. Springer Science and Business Media
LLC, may 2001, vol. 3, no. 2, p. 156–170. DOI: 10.1007/s100090100038. ISSN
1433-2779. Available at: http://dx.doi.org/10.1007/s100090100038.

[27] Minato, S.-i.; Uno, T. and Arimura, H. LCM over ZBDDs: Fast Generation of
Very Large-Scale Frequent Itemsets Using a Compact Graph-Based Representation.
In: Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg,
2008, p. 234–246. ISBN 9783540681250. Available at:
http://dx.doi.org/10.1007/978-3-540-68125-0_22.

[28] Møller, J.; Lichtenberg, J.; Andersen, H. R. and Hulgaard, H. Difference
Decision Diagrams. In: Computer Science Logic. Springer Berlin Heidelberg, 1999,
p. 111–125. ISBN 9783540481683. Available at:
http://dx.doi.org/10.1007/3-540-48168-0_9.

[29] Rudell, R. Dynamic variable ordering for ordered binary decision diagrams.
In: Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD). 1993, p. 42–47. Available at:
https://ieeexplore.ieee.org/document/580029.

[30] Hoos, H. SATLIB Benchmark Suite. 2011. Available at:
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html.

58

https://vbn.aau.dk/files/425046823/CDD_26pages_nordic_journal_of_computing_1999.pdf
https://vbn.aau.dk/files/425046823/CDD_26pages_nordic_journal_of_computing_1999.pdf
https://ieeexplore.ieee.org/document/6768525
https://ieeexplore.ieee.org/document/144618
https://github.com/Jany26/tree-aut-lib
https://www.vut.cz/en/students/final-thesis/detail/146866
https://doi.org/10.1145/157485.164890
http://dx.doi.org/10.1007/s100090100038
http://dx.doi.org/10.1007/978-3-540-68125-0_22
http://dx.doi.org/10.1007/3-540-48168-0_9
https://ieeexplore.ieee.org/document/580029
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

[31] Shannon, C. E. A symbolic analysis of relay and switching circuits. Transactions of
the American Institute of Electrical Engineers. Institute of Electrical and Electronics
Engineers (IEEE), december 1938, vol. 57, no. 12, p. 713–723. DOI:
10.1109/t-aiee.1938.5057767. ISSN 0096-3860. Available at:
http://dx.doi.org/10.1109/T-AIEE.1938.5057767.

[32] Sølvsten, S. Benchmarking Suite for BDD packages. 2024. Available at:
https://github.com/SSoelvsten/bdd-benchmark.

[33] Sølvsten, S. BuDDy: Binary Decision Diagram Library. 2025. Available at:
https://github.com/SSoelvsten/buddy. Includes links to original documentation and
PhD thesis. Doxygen documentation available at:
https://buddy.sourceforge.net/manual/main.html.

[34] van Dijk, T.; Wille, R. and Meolic, R. Tagged BDDs: Combining reduction rules
from different decision diagram types. In: Stewart, D. and Weissenbacher, G.,
ed. 2017 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2017,
p. 108–115. ISBN 978-3540001164. Available at:
https://ieeexplore.ieee.org/document/8102248.

[35] van Dijk, T. et al. Sylvan: Multi-core Decision Diagram (BDD/LDD)
implementation. 2023. Available at: https://github.com/utwente-fmt/sylvan.

[36] van Dijk, T.; Laarman, A. and van de Pol, J. Multi-Core BDD Operations for
Symbolic Reachability. Electronic Notes in Theoretical Computer Science, 2013,
vol. 296, p. 127–143. DOI: https://doi.org/10.1016/j.entcs.2013.07.009. ISSN
1571-0661. Available at:
https://www.sciencedirect.com/science/article/pii/S1571066113000406.
Proceedings the Sixth International Workshop on the Practical Application of
Stochastic Modelling (PASM) and the Eleventh International Workshop on Parallel
and Distributed Methods in Verification (PDMC).

[37] Wegener, I. The size of reduced OBDD’s and optimal read-once branching
programs for almost all Boolean functions. IEEE Transactions on Computers, 1994,
vol. 43, no. 11, p. 1262–1269. DOI: 10.1109/12.324559. Available at:
https://ieeexplore.ieee.org/abstract/document/324559.

[38] Yang, S. Logic Synthesis and Optimization Benchmarks User Guide: Version 3.0.
Microelectronics Center of North Carolina (MCNC), 1991. Available at:
https://ddd.fit.cvut.cz/www/prj/Benchmarks/LGSynth91.pdf.

59

http://dx.doi.org/10.1109/T-AIEE.1938.5057767
https://github.com/SSoelvsten/bdd-benchmark
https://github.com/SSoelvsten/buddy
https://buddy.sourceforge.net/manual/main.html
https://ieeexplore.ieee.org/document/8102248
https://github.com/utwente-fmt/sylvan
https://www.sciencedirect.com/science/article/pii/S1571066113000406
https://ieeexplore.ieee.org/abstract/document/324559
https://ddd.fit.cvut.cz/www/prj/Benchmarks/LGSynth91.pdf

	Introduction
	Binary Decision Diagrams
	Boolean functions
	Representing Boolean functions as decision trees
	Variable ordering matters
	Reducing the spatial complexity
	Challenges with efficient implementations of BDDs
	Zero-suppressed binary decision diagrams
	Tagged binary decision diagrams
	Binary decision diagrams with chain reductions
	Binary decision diagrams with edge-specified reductions

	Manipulating Binary Decision Diagrams — Apply
	Important operations on binary decision diagrams
	Basic overview of Apply algorithm in BDDs
	Apply in modifications of BDDs

	Automata-based Binary Decision Diagrams — ABDDs
	Tree automata preliminaries
	ABDD preliminaries
	ABDD canonization
	Further remarks

	ABDD Apply
	Applying Boolean operations on reduced edges
	Synchronizing variables during the recursive descent
	Additional optimizations
	Complete algorithm

	Experimental Results
	Node count comparison
	Examining the growth of progressive Apply usage

	Conclusion
	Future work

	Bibliography

