Přístupnostní navigace
Přejít k obsahu
|
Přejít k hlavnímu menu
VUT
Menu
Life at BUT
Submenu
BUT Ambience
Spaces
Dormitories
Refectories
Sport
Brno
Practical guide
Study Options
Submenu
Join BUT
Short-term studies
Degree studies in English
Degree studies in Czech
E-application
Students
Submenu
Courses
Study programmes
Study Regulations
Going Abroad
Scholarships
Social Safety
Admission Office
Welcome week
Final theses
Recognition of Foreign Education
Personal Data Protection
Entrepreneurship Support
Research & Development
Submenu
Research & Development
at BUT
International Scientific Advisory Board
Evaluation
Research centres
Knowledge Transfer
Open Science
Projects
Projects from Structural Funds
Results
Specific University Research
Cooperation
Submenu
Cooperation with corporate sector
Welcome Service
International Staff Week
International Agreements
University Networks
University
Submenu
University profile
News
Organization Structure
Alumni
Sustainable university
Safe University
Entrepreneurial University / ContriBUTe
Official notice board
Career at BUT
Social Safety
Support and Development of Employees and Students / HR Award
Media
Personal Data Protection
Contacts
Faculties
Faculty of Civil Engineering
Faculty of Mechanical Engineering
Faculty of Electrical Engineering and Communication
Faculty of Architecture
Faculty of Chemistry
Faculty of Business and Management
Faculty of Fine Arts
Faculty of Information Technology
University Institutes
Institute of Forensic Engineering
Centre of Sports Activities
Central European Institute of Technology (CEITEC BUT)
Parts
Center of Information Services
Continuing Education and Counselling Centre
Halls of Residence and Dining Services
VUTIUM Press
Central Library
Rectorate
CS
Log in
Log in
BUT Web
Intraportal
Studis
Teacher
Elearning
Search
CS
Search
Search
Close
Home
University
Media
Press Releases
Researchers from BUT can determine the position of a camera from a photo. Geo-localization helps with security and photo editing
Researchers from BUT can determine the position of a camera from a photo. Geo-localization helps with security and photo editing
Martin Cadik of Faculty of Information Technology BUT performs research into computational photography and landscape photo and video geo-localization for eighteen years. His research group CPhoto@FIT is able to determine precise location and view direction of a camera from a picture. Geo-localization can help presenting and editing holiday pictures or aid emergency services in searches for missing people. Brno computer researchers collaborate with Adobe Research, part of
Adobe
, a San Jose, California-based software company that is changing the world through digital experiences.
“A digital photo contains approximate GPS coordinates of the position, where the photo has been taken. We need to specify this position and find a view direction of the camera. We can do that with digital landscape models, that provide us with altitude data of the landscape. Such 3D models of Earth are freely available, we can easily determine the location of forests, mountains or glaciers. We use silhouettes to compare the picture with the 3D model to determine the precise location and view direction of the camera,” Martin Cadik
explained the principle of visual geo-localization of photos and videos. His team is the only one in the Czech Republic focusing on landscape pictures and one of very few researchers in the field in Europe.
Researchers from BUT can determine the position of a camera | Autor: CPhoto@FIT
Geo-localization of pictures also has uses in the security industry. A precise localization of a picture can help emergency services localising a missing person. Experts can determine a precise location of a picture from the features of surrounding terrain. Such information can also be used in forensic analysis in determining whether a picture contains what its author claims and whether it has been taken on the claimed location (such as peak of Mt Everest).
Members of Adobe Research, including Mike Lukac, are collaborating with Martin Cadik´s team on the research. Cadik noted that as part of the work together, his doctoral students would gain a unique opportunity at an internship at one of the world’s best-known software companies. Doctoral student Jan Brejcha from Cadik´s
research team has completed such internship recently.
The system can recognize water (blue), forest (green) and sky (pink) | Autor: CPhoto@FIT
Apart from forensic experts, ordinary users can benefit from geo-localization as well – for example to edit their holiday pictures. Computational photography offers a wide range of uses in editing existing pictures. “The user can simulate a different camera and refocus an existing picture. Information on the distance of a mountain peak can be used to artificially refocus the picture in a way our equipment would never permit. We can see, how a picture would look like if we would take it with a large telescope,” said Cadik, a former Max Planck Institute post-doc, presenting a possible application of his research.
“A picture dimmed with mist can be easily and automatically brightened and skies cleared. On the other hand, a mist can be easily added for an artistic impression. Nowadays, this is a difficult task to be done manually, we know how to achieve this automatically,” said Cadik, who claims that computational photography brings a new approach to editing pictures. It is possible to change the lighting of a picture, add artificial shadows made by the terrain features and edit the picture to look as if it was taken during sunrise or sunset. “Nowadays, it is increasingly difficult to recognize an edited, artificially altered picture. However, it is possible. That is the focus of our work in forensic picture analysis,” added IT researcher from Brno.
Illustration of geo-localization of photograph | Autor: CPhoto@FIT
A connection of information from a picture and 3D terrain models help users gain more data on surrounding landscape, such as names of nearby mountains, distances and altitudes of their peaks. Geo-localization of pictures could also be utilised by Swiss Alpine Rescue service that uses extensive camera network to monitor snow cover. An extension of data from digital 3D models could provide rescuers valuable additional information on the surrounding landscape.
Information on landscape is also helpful with navigating self-driving cars and drones. Martin Cadik´s
team focuses on geo-localization of landscape pictures, however they can also analyse photos and videos taken in cities as well. In such cases, they compare a picture with an existing database, such as Google Street View. With landscape models, the researchers use digital 3D models enhanced by data from a public geographical database Open Street Map. Geo-localization is also relevant in the design of autonomous space rovers used in Mars exploration, that also use surrounding landscape features for navigation.
More on the work of Martin Cadik´s
team at
http://cphoto.fit.vutbr.cz/
.
Published
2018-05-10
Link
https://www.vut.cz/en/but/media/f19527/d175146
Responsibility:
Mgr. Kamila Šmídková
Nahoru