Project detail
Qualitative properties of solutions of differential equations and their applications
Duration: 1.1.2011 — 31.12.2015
Funding resources
Grantová agentura České republiky - Standardní projekty
On the project
Cílem projektu je studium kvalitativních vlastností řešení obyčejných diferenciálních rovnic, včetně rovnic se zpožděným argumentem. Speciální pozornost bude věnována studiu diferenciálních rovnic modelujících reálné problémy
Description in English
Project is a continuation of the projects IAA1163401 GA AV (2004-2006) a 201/08/0469 GA ČR (2008-2010). The main attention will be focused on the following problems of the qualitative theory of differential equations: Asymptotic properties of solutions of differential equations with general Phi-Laplacian; To built relative oscillation theory for half-linear differential equations; Asymptotic and oscillatory properties of solutions of delayed differential equations; Stability of delayed differential systems; Numerical investigation of the first order delayed differential equations; Applications of some derived results to differential equations modelling problems of a technical or scientific nature
Keywords
obyčejné diferenciální rovnice; asymptotické vlastnosti; oscilace; odkloněný argument; diskretizační me
Key words in English
obyčejné diferenciální rovnice; asymptotické vlastnosti; oscilace; odkloněný argument; diskretizační me
Mark
GAP201/11/0768
Default language
Czech
People responsible
Došlá Zuzana, Prof. RNDr., DrSc. - principal person responsible
Čermák Jan, prof. RNDr., CSc. - fellow researcher
Units
Institute of Mathematics
- responsible department (1.1.1989 - not assigned)
Institute of Mathematics
- co-beneficiary (1.1.2011 - 31.12.2015)
Results
SVOBODA, Z. Representation of Solutions of Linear Differential Systems of the Second Order with Constant Delays. Journal of Mathematical Sciences, 2017, vol. 222, no. 3, p. 345-358. ISSN: 1072-3374.
Detail
SIEGMUND, S.; DIBLÍK, J.; NOWAK, C. A generalized Picard-Lindelöf theorem. Electronic Journal of Qualitative Theory of Differential Equations, 2016, vol. 2016, no. 28, p. 1-8. ISSN: 1417-3875.
Detail
ČERMÁK, J.; JÁNSKÝ, J. Stability and periodic investigations of linear planar difference systems. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, vol. 39, no. 18, p. 5343-5354. ISSN: 0170-4214.
Detail
TOMÁŠEK, P. Asymptotic stability regions for certain two parametric full-term linear difference equation. In Differential and Difference Equations with Applications. Springer Proceedings in Mathematics & Statistics. Springer Proceedings in Mathematics and Statistics. New York: Springer, 2016. p. 323-330. ISBN: 978-3-319-32855-3. ISSN: 2194-1009.
Detail
ČERMÁK, J.; KISELA, T.; HORNÍČEK, J. Stability regions for fractional differential systems with a time delay. Communications in Nonlinear Science and Numerical Simulation, 2016, vol. 31, no. 1-3, p. 108-123. ISSN: 1007-5704.
Detail
ČERMÁK, J. Stability conditions for linear delay difference equations: A survey and perspectives. Tatra Mountains Mathematical Publications, 2015, vol. 63, no. 63, p. 1-29. ISSN: 1210-3195.
Detail
ČERMÁK, J.; NECHVÁTAL, L.; GYŐRI, I. On explicit stability conditions for a linear fractional difference system. Fractional Calculus and Applied Analysis, 2015, vol. 18, no. 3, p. 651-672. ISSN: 1311-0454.
Detail
KISELA, T.; ČERMÁK, J. Stability properties of two-term fractional differential equations. NONLINEAR DYNAMICS, 2015, vol. 80, no. 4, p. 1673-1684. ISSN: 0924-090X.
Detail
TOMÁŠEK, P. Asymptotic stability of a full term linear difference equation with two parameters. Tatra Mountains Mathematical Publications, 2015, vol. 63, no. 1, p. 283-290. ISSN: 1210-3195.
Detail
BEREZANSKY, L.; DIBLÍK, J.; SVOBODA, Z.; ŠMARDA, Z. Simple uniform exponential stability conditions for a system of linear delay differential equations. APPLIED MATHEMATICS AND COMPUTATION, 2015, vol. 2015, no. 250, p. 605-614. ISSN: 0096-3003.
Detail
BATTELLI, F.; DIBLÍK, J.; FEČKAN, M.; PICKTON, J.; POSPÍŠIL, M.; SUSANTO, H. Dynamics of generalized PT-symmetric dimers with time-periodic gain–loss. NONLINEAR DYNAMICS, 2015, vol. 81, no. 1, p. 353-371. ISSN: 0924-090X.
Detail
ČERMÁK, J.; JÁNSKÝ, J.; TOMÁŠEK, P. Two types of stability conditions for linear delay difference equations. Applicable Analysis and Discrete Mathematics, 2015, vol. 9, no. 4, p. 120-138. ISSN: 1452-8630.
Detail
NECHVÁTAL, L. On asymptotics of discrete Mittag-Leffler function. Mathematica Bohemica, 2014, vol. 139, no. 4, p. 667-675. ISSN: 0862-7959.
Detail
DIBLÍK, J. A note on explicit criteria for the existence of positive solutions to the linear advanced equation \dot (t) = c(t)x(t + \tau). APPLIED MATHEMATICS LETTERS, 2014, vol. 35, no. 2014, p. 72-76. ISSN: 0893-9659.
Detail
DIBLÍK, J.; KÚDELČÍKOVÁ, M.; JANGLAJEW, K. An explicit coefficient criterion for the existence of positive solutions to the linear advanced equation. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, vol. 19, no. 2014, p. 2461-2467. ISSN: 1531-3492.
Detail
ČERMÁK, J.; KISELA, T. Introduction to Stability Theory of Linear Fractional Difference Equations. In Fractional Calculus: Theory. Mathematics Research Developments. 2014. p. 117-162. ISBN: 978-1-63463-002-3.
Detail
ČERMÁK, J.; JÁNSKÝ, J. Explicit stability conditions for a linear trinomial delay difference equation. APPLIED MATHEMATICS LETTERS, 2015, vol. 43, no. 5, p. 56-60. ISSN: 0893-9659.
Detail
ČERMÁK, J.; DRAŽKOVÁ, J. On stability sets for numerical discretizations of neutral delay differential equations. Tatra Mountains Mathematical Publications, 2015, vol. 63, no. 2, p. 89-100. ISSN: 1210-3195.
Detail
ČERMÁK, J.; KISELA, T. Exact and discretized stability of the Bagley-Torvik equation. Journal of Computational and Applied Mathematics, 2014, vol. 269, no. 10, p. 53-67. ISSN: 0377-0427.
Detail
ČERMÁK, J.; JÁNSKÝ, J. Stability switches in linear delay difference equations. APPLIED MATHEMATICS AND COMPUTATION, 2014, vol. 243, no. 9, p. 755-766. ISSN: 0096-3003.
Detail
Responsibility: Došlá Zuzana, Prof. RNDr., DrSc.