Project detail
Explainable Dimension Reduction of Large Spectroscopic Data
Duration: 1.3.2020 — 28.2.2021
Funding resources
Vysoké učení technické v Brně - Vnitřní projekty VUT
On the project
In modern Laser-Induced Breakdown Spectroscopy applications, we produce a very large, high-dimensional datasets which are impossible to inspect by hand or process by commonly used techniques. We have already shown that the dimension of the data can be effectively reduced. However, obtaining easily-understandable low-dimensional representation is still challenging and requires increased attention. Succeeding in this task would dramatically improve the exploration of large LIBS datasets (visualization, collaborative filtering, classification).
Mark
CEITEC VUT-J-20-6528
Default language
Czech
People responsible
Vrábel Jakub, Ing. - principal person responsible
Kaiser Jozef, prof. Ing., Ph.D. - fellow researcher
Units
Advanced instrumentation and methods for material characterization
- responsible department (5.3.2020 - not assigned)
Advanced instrumentation and methods for material characterization
- co-beneficiary (1.1.2020 - 31.12.2020)
Central European Institute of Technology BUT
- beneficiary (1.1.2020 - 31.12.2020)
Results
VRÁBEL, J.; KÉPEŠ, E.; POŘÍZKA, P.; KAISER, J. Classification of spectroscopic data - challenges, benchmarking and limitations. 2020.
Detail
VRÁBEL, J.; KÉPEŠ, E.; POŘÍZKA, P.; KAISER, J. Distance of spectroscopic data. 2020.
Detail
VRÁBEL, J.; POŘÍZKA, P.; KAISER, J. Restricted Boltzmann Machine method for dimensionality reduction of large spectroscopic data. Spectrochimica Acta Part B, 2020, vol. 167, no. 105849, p. NA (NA p.)ISSN: 0584-8547.
Detail
Responsibility: Vrábel Jakub, Ing.