Přístupnostní navigace
E-application
Search Search Close
Publication detail
ONDROUŠKOVÁ, J. KOMÍNEK, J. POHANKA, M.
Original Title
Computing Cooling Intensity from Descaling Experiments
Type
conference paper
Language
English
Original Abstract
Steel oxidation during the hot rolling in-line process is undesirable behavior. High pressure descaling nozzles are often used to remove oxides from the surface of a product. The water spray from high pressure nozzles also causes intense cooling. Knowledge of this cooling intensity is necessary for on-line simulations used by control systems. Knowledge of boundary conditions can also help with the choice of descaling nozzles. These boundary conditions are surface temperature, surface heat flux and the heat transfer coefficient (HTC). The HTC can be obtained from the measured temperature histories inside a test plate by inverse heat conduction problem or from the measured surface temperatures. This article describes a new inverse method for the computation of HTCs from surface temperature measurements using an infrared line-scanner during descaling experiments. The measurement technique used to obtain data for the inverse method is described as well. Data from real measurements are presented and evaluated.
Keywords
Cooling intensity, descaling, heat transfer coefficient, heat conduction task, infrared line-scanner
Authors
ONDROUŠKOVÁ, J.; KOMÍNEK, J.; POHANKA, M.
RIV year
2013
Released
10. 9. 2013
ISBN
978-80-260-3912-9
Book
Steelsim 2013
Pages from
19
Pages to
Pages count
8
BibTex
@inproceedings{BUT102340, author="Jana {Ondroušková} and Jan {Komínek} and Michal {Pohanka}", title="Computing Cooling Intensity from Descaling Experiments", booktitle="Steelsim 2013", year="2013", pages="19--19", isbn="978-80-260-3912-9" }