Přístupnostní navigace
E-application
Search Search Close
Publication detail
MATĚJKA, P. ZHANG, L. NG, T. MALLIDI, S. GLEMBEK, O. MA, J. ZHANG, B.
Original Title
Neural Network Bottleneck Features for Language Identification
Type
conference paper
Language
English
Original Abstract
We have presented the bottleneck features in the context of Language identification. It combines benefits of both phonotactic and acoustic system. Usually, the phonotactic system is favorable for the long duration files, while acoustic for the short ones. This approach takes the advantage of both. In addition, we can also use modeling of context dependent phonemes in bottleneck features. This brings very nice improvement over the context independent phonemes.
Keywords
language identification, noisy speech, robust feature extraction
Authors
MATĚJKA, P.; ZHANG, L.; NG, T.; MALLIDI, S.; GLEMBEK, O.; MA, J.; ZHANG, B.
RIV year
2014
Released
16. 6. 2014
Publisher
International Speech Communication Association
Location
Joensuu
ISBN
2312-2846
Periodical
Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland
Year of study
Number
6
State
Republic of Finland
Pages from
299
Pages to
304
Pages count
URL
http://www.fit.vutbr.cz/research/groups/speech/publi/2014/matejka_odyssey2014_299-304-35.pdf
BibTex
@inproceedings{BUT111630, author="Pavel {Matějka} and Le {Zhang} and Tim {Ng} and Sri Harish {Mallidi} and Ondřej {Glembek} and Jeff {Ma} and Bing {Zhang}", title="Neural Network Bottleneck Features for Language Identification", booktitle="Proceedings of Odyssey 2014", year="2014", journal="Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland", volume="2014", number="6", pages="299--304", publisher="International Speech Communication Association", address="Joensuu", issn="2312-2846", url="http://www.fit.vutbr.cz/research/groups/speech/publi/2014/matejka_odyssey2014_299-304-35.pdf" }