Přístupnostní navigace
E-application
Search Search Close
Publication detail
ŠMÍD, P.
Original Title
Artificial Neural Networks For Modelling Wire Antennas
Type
conference paper
Language
English
Original Abstract
The paper describes an approach to learning artificial neural networks (ANN) with the genetic algorithm (GA). The goal is modeling the wire dipole by ANN. The arm dipole length, frequency and input impedance are the training parameters for learning the ANN. Two types of ANN were selected for mentioned problem: the recurrent Elman ANN and the feed-forward one. Neural networks are implemented in MATLAB. Results of training abilities are discussed.
Key words in English
Genetic Algorithm, Artificial Neural Network, Dipole Antenna
Authors
RIV year
2004
Released
1. 1. 2004
Publisher
Vysoké učení technické v Brně, FEKT
ISBN
80-214-2635-7
Book
STUDENT EEICT 2004 - Proceedings of the 10-th conference
Pages from
155
Pages to
159
Pages count
5
BibTex
@inproceedings{BUT11391, author="Petr {Šmíd}", title="Artificial Neural Networks For Modelling Wire Antennas", booktitle="STUDENT EEICT 2004 - Proceedings of the 10-th conference", year="2004", pages="5", publisher="Vysoké učení technické v Brně, FEKT", isbn="80-214-2635-7" }