Přístupnostní navigace
E-application
Search Search Close
Publication detail
DEKA, J. MĚCH, R. IANESELLI, L. AMENITSCH, H. CACHO-NERIN, F. PARISSE, P. CASALIS, L.
Original Title
Surface Passivation Improves the Synthesis of Highly Stable and Specific DNA-Functionalized Gold Nanoparticles with Variable DNA Density
Type
journal article in Web of Science
Language
English
Original Abstract
We report a novel and multifaceted approach for the quick synthesis of highly stable single-stranded DNA (ssDNA) functionalized gold nanoparticles (AuNPs). The method is based on the combined effect of surface passivation by (1-mercaptoundec-11-yl)hexa(ethylene glycol) and low pH conditions, does not require any salt pretreatment or high excess of ssDNA, and can be generalized for oligonucleotides of any length or base sequence. The synthesized ssDNA-coated AuNPs conjugates are stable at salt concentrations as high as 3.0 M, and also functional and specific toward DNA–DNA hybridization, as shown from UV–vis spectrophotometry, scanning electron microscopy, gel electrophoresis, fluorescence, and small angle X-ray scattering based analyses. The method is highly flexible and shows an additional advantage of creating ssDNA-AuNP conjugates with a predefined number of ssDNA strands per particle. Its simplicity and tenability make it widely applicable to diverse biosensing applications involving ssDNA functionalized AuNPs.
Keywords
DNA functionalization; gold nanoparticles; surface passivation; oligo ethylene glycol; salt-stability; specificity; variable DNA density
Authors
DEKA, J.; MĚCH, R.; IANESELLI, L.; AMENITSCH, H.; CACHO-NERIN, F.; PARISSE, P.; CASALIS, L.
RIV year
2015
Released
10. 3. 2015
ISBN
1944-8252
Periodical
ACS applied materials & interfaces
Year of study
7
Number
12
State
United States of America
Pages from
7033
Pages to
7040
Pages count
8
BibTex
@article{BUT114481, author="Jashmini {Deka} and Rostislav {Váňa} and Luca {Ianeselli} and Heinz {Amenitsch} and Fernando {Cacho-Nerin} and Pietro {Parisse} and Loredana {Casalis}", title="Surface Passivation Improves the Synthesis of Highly Stable and Specific DNA-Functionalized Gold Nanoparticles with Variable DNA Density", journal="ACS applied materials & interfaces", year="2015", volume="7", number="12", pages="7033--7040", doi="10.1021/acsami.5b01191", issn="1944-8252" }