Přístupnostní navigace
E-application
Search Search Close
Publication detail
ČELKO, L. JECH, D. CHRÁSKA, T. KLAKURKOVÁ, L. SLÁMEČKA, K. SPOTZ, Z. DUBSKÝ, J. ŠVEJCAR, J.
Original Title
Formation and Growth of Thermally Grown Oxide in Two Different Atmospheric Plasma Sprayed Thermal Barrier Coating Systems
Type
conference proceedings
Language
English
Original Abstract
Modern thermal barrier coating systems (TBCs), see Fig. 1, usually consist of nickel or cobalt based substrate alloy, adjacent (inter)metallic bond coat (Pt-Al or M-CrAlY, where M substitutes Ni, Co or their appropriate combination) and outer ceramic top coat (ZrO2+6-8%Y2O3) [1]. As the bond coats are primarily applied to protect the underlying metallic substrate against the oxidizing and hot-corrosive environment, the principal function of TBC, as its name suggests, is to reduce the metallic substrate temperature and thereby either increase the service life of the component or allow for higher combustion temperatures, which translates into increased aerospace engines efficiency. The aim of this work is to focus on differences in formation and growth of TGO at two types of TBCs (ceramic top coats) produced by means of atmospheric and/or water stabilized plasma spraying after the isothermal exposure at the temperature of 900 and 1050°C.
Keywords
thermal barrier coating systems (TBCs); M-CrAlY; ZrO2 + Y2O3; thermally grown oxide layer (TGO); APS; 713LC; scanning electron microscopy
Authors
ČELKO, L.; JECH, D.; CHRÁSKA, T.; KLAKURKOVÁ, L.; SLÁMEČKA, K.; SPOTZ, Z.; DUBSKÝ, J.; ŠVEJCAR, J.
Released
13. 7. 2014
Publisher
International Community for composites/Nano Engineering
Location
Saint Julian´s, Malta
Pages from
145
Pages to
146
Pages count
2
BibTex
@proceedings{BUT118132, editor="Ladislav {Čelko} and David {Jech} and Tomáš {Chráska} and Lenka {Klakurková} and Karel {Slámečka} and Zdeněk {Spotz} and Jiří {Dubský} and Jiří {Švejcar}", title="Formation and Growth of Thermally Grown Oxide in Two Different Atmospheric Plasma Sprayed Thermal Barrier Coating Systems", year="2014", series="22", number="1", pages="145--146", publisher="International Community for composites/Nano Engineering", address="Saint Julian´s, Malta" }