Publication detail

Rapid Grain Growth in 3Y-TZP Nanoceramics by Pressure-Assisted and Pressure-Less SPS

SALAMON, D. KALOUSEK, R. MACA, K. SHEN, Z.

Original Title

Rapid Grain Growth in 3Y-TZP Nanoceramics by Pressure-Assisted and Pressure-Less SPS

Type

journal article in Web of Science

Language

English

Original Abstract

Pressure-less spark plasma sintering (SPS) is a new approach during which rapid densification of ceramic nanopowder green bodies is accompanied by rapid grain growth. Although the origin of this phenomenon has not yet been fully understood significant, difference in grain growth between pressure-less and pressure-assisted SPS was expected. In this work 3Y-TZP nanopowder with average particle size of 12 nm was consolidated using two-step approach: (1) at an intermediate temperature (600°C to 1000°C) SPS warm pressing followed by (2) high temperature (1400°C to 1600°C) pressure-less SPS. The standard one step pressure-assisted SPS experiments were quoted as references. Rapid grain growth was observed during both pressure-less and standard SPS. The samples prepared by both approaches at the same sintering temperature (1400°C–1600°C) achieved identical grain size and grain size distribution, if large pores were eliminated in early stage by SPS warm pressing. The electric current, electromagnetic field, and mechanical pressure is proven to have a negligible direct influence on grain growth in 3Y-TZP ceramics at temperatures. above 1000°C under standard SPS conditions.

Keywords

Particle size; Spark plasma sintering; Zirconia

Authors

SALAMON, D.; KALOUSEK, R.; MACA, K.; SHEN, Z.

RIV year

2015

Released

1. 12. 2015

ISBN

0002-7820

Periodical

Journal of the American Ceramic Society

Year of study

98

Number

12

State

United States of America

Pages from

3706

Pages to

3712

Pages count

7

BibTex

@article{BUT120145,
  author="David {Salamon} and Radek {Kalousek} and Karel {Maca} and Zhijian {Shen}",
  title="Rapid Grain Growth in 3Y-TZP Nanoceramics by Pressure-Assisted and Pressure-Less SPS",
  journal="Journal of the American Ceramic Society",
  year="2015",
  volume="98",
  number="12",
  pages="3706--3712",
  doi="10.1111/jace.13837",
  issn="0002-7820"
}