Přístupnostní navigace
E-application
Search Search Close
Publication detail
SMÍŠEK, R. KOLÁŘOVÁ, J.
Original Title
ECG signal classification based on SVM
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
Cardiovascular diseases nowadays represent the most common cause of death in Western countries. Long-term ECG recording is modern method, because it allows to detect sporadically occurring pathology. We designed an automatic classifier to detect five pathologies (AAMI standard) by SVM method. The classifier was tested on the entire MIT-BIH Arrhythmia Database with an accuracy of 99.17 %. We also compared the quality of parameters entering the classifier.
Keywords
ECG classification, support vector machines, SVM, MIT-BIH database
Authors
SMÍŠEK, R.; KOLÁŘOVÁ, J.
Released
28. 4. 2016
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-5350-0
Book
Proceedings of the 22st Conference STUDENT EEICT 2016
Edition number
první
Pages from
365
Pages to
369
Pages count
5
URL
http://www.feec.vutbr.cz/EEICT/2016/sbornik/EEICT-2016-sborn%C3%ADk-komplet.pdf
BibTex
@inproceedings{BUT124701, author="Radovan {Smíšek} and Jana {Kolářová}", title="ECG signal classification based on SVM", booktitle="Proceedings of the 22st Conference STUDENT EEICT 2016", year="2016", number="první", pages="365--369", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5350-0", url="http://www.feec.vutbr.cz/EEICT/2016/sbornik/EEICT-2016-sborn%C3%ADk-komplet.pdf" }