Publication detail
Weakly Delayed Difference Systems in $R^3$
ŠAFAŘÍK, J. DIBLÍK, J. MENCÁKOVÁ, K.
Original Title
Weakly Delayed Difference Systems in $R^3$
Type
conference paper
Language
English
Original Abstract
The paper is concerned with weakly delayed difference system $x(k+1) = Ax(k) + Bx(k-1)$ where k = 0, 1, ... and $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. We solve this system utilizing a Putzer algorithm.
Keywords
Discrete system, weak delay, initial problem, Putzer algorithm.
Authors
ŠAFAŘÍK, J.; DIBLÍK, J.; MENCÁKOVÁ, K.
Released
16. 6. 2016
Publisher
Univerzita obrany v Brně
Location
Brno
ISBN
978-80-7231-464-5
Book
MITAV 2016 (Matematika, informační technologie a aplikované vědy)
Edition number
1
Pages from
1
Pages to
8
Pages count
8
URL
BibTex
@inproceedings{BUT129829,
author="Jan {Šafařík} and Josef {Diblík} and Kristýna {Mencáková}",
title="Weakly Delayed Difference Systems in $R^3$",
booktitle="MITAV 2016 (Matematika, informační technologie a aplikované vědy)",
year="2016",
number="1",
pages="1--8",
publisher="Univerzita obrany v Brně",
address="Brno",
isbn="978-80-7231-464-5",
url="http://mitav.unob.cz/"
}