Přístupnostní navigace
E-application
Search Search Close
Publication detail
ŠAFAŘÍK, J. DIBLÍK, J.
Original Title
Weakly Delayed Difference Systems in ${\mathbb R^3$ and their Solution
Type
conference paper
Language
English
Original Abstract
The paper is concerned with a weakly delayed difference system $$x(k+1) = Ax(k) + Bx(k-1)$$ where $k = 0, 1, \dots$ and $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. It is demonstrated that the initial delayed system can be transformed into a linear system without delay and, moreover, that all the eigenvalues of the matrix of the linear terms of this system can be obtained as the union of all the eigenvalues of matrices $A$ and $B$.\\ In such a case, the new linear system without delay can be solved easily, e.g., by utilizing the well-known Putzer algorithm with one of the possible cases being considered in the paper.
Keywords
Discrete system, weak delay, initial problem, Putzer algorithm.
Authors
ŠAFAŘÍK, J.; DIBLÍK, J.
Released
16. 6. 2016
Publisher
Univerzita obrany v Brně
Location
Brno
ISBN
978-80-7231-400-3
Book
MITAV 2016 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers
Edition number
1
Pages from
84
Pages to
104
Pages count
21
URL
http://mitav.unob.cz/
BibTex
@inproceedings{BUT132881, author="Jan {Šafařík} and Josef {Diblík}", title="Weakly Delayed Difference Systems in ${\mathbb R^3$ and their Solution", booktitle="MITAV 2016 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers", year="2016", number="1", pages="84--104", publisher="Univerzita obrany v Brně", address="Brno", isbn="978-80-7231-400-3", url="http://mitav.unob.cz/" }