Přístupnostní navigace
E-application
Search Search Close
Publication detail
HOKEŠ, F. KRÁL, P. KRŇÁVEK, O. HUŠEK, M.
Original Title
Improved Sensitivity Analysis in the Inverse Identification of the Parameters of a Nonlinear Material Model
Type
conference paper
Language
English
Original Abstract
During the inverse identification of the parameters of a nonlinear material model via an optimization algorithm, it is advantageous to utilize sensitivity analysis as a pre-processing tool to decrease the dimensions of the design vector by removing insignificant parameters. As regards the optimization and sensitivity analysis, a crucial aspect consists in the choice of the objective function. It is possible to derive special forms of objective functions for better understanding of the functionality of the given complex material model. The present article discusses three types of Python scripts that facilitate the calculation of different objective functions from the numerically and experimentally obtained load-displacement curves.
Keywords
Sensitivity, optimisation, identification, nonlinear material model of concrete, Python.
Authors
HOKEŠ, F.; KRÁL, P.; KRŇÁVEK, O.; HUŠEK, M.
Released
22. 2. 2017
ISBN
1877-7058
Periodical
Procedia Engineering
Year of study
2017
Number
172
State
Kingdom of the Netherlands
Pages from
1
Pages to
8
Pages count
BibTex
@inproceedings{BUT133260, author="Filip {Hokeš} and Petr {Král} and Ondřej {Krňávek} and Martin {Hušek}", title="Improved Sensitivity Analysis in the Inverse Identification of the Parameters of a Nonlinear Material Model", booktitle="Modern Building Materials, Structures and Techniques", year="2017", journal="Procedia Engineering", volume="2017", number="172", pages="1--8", doi="10.1016/j.proeng.2017.02.039", issn="1877-7058" }