Přístupnostní navigace
E-application
Search Search Close
Publication detail
DIBLÍK, J. MENCÁKOVÁ, K.
Original Title
Representation of solutions of higher-order linear discrete systems
Type
conference paper
Language
English
Original Abstract
A linear discrete homogenous system of the order $(m+2)$: \Delta^2 x(k) + B^2 x(k-m)= f(k), k \in\bN_0 is considered where B is a constant n \times n regular matrix, m \in \bN_0 and x\colon \{ -m, -m+1, \dots\} \to \bR^n, f\colon\bZ_0^{\infty} \rightarrow \bR^n. Two linearly independent solutions are found as a special matrix functions called delayed discrete cosine and delayed discrete sine. Utilizing these matrix functions formulas for solutions are derived. An example illustrating results is given as well.
Keywords
delayed cosine; delayed sine; discrete equation
Authors
DIBLÍK, J.; MENCÁKOVÁ, K.
Released
15. 6. 2017
Publisher
Univerzita obrany
Location
Brno
ISBN
978-80-7231-417-1
Book
Matematika, informační technologie a aplikované vědy
Edition number
1
Pages from
Pages to
9
Pages count
URL
http://mitav.unob.cz
BibTex
@inproceedings{BUT137196, author="Josef {Diblík} and Kristýna {Mencáková}", title="Representation of solutions of higher-order linear discrete systems", booktitle="Matematika, informační technologie a aplikované vědy", year="2017", number="1", pages="1--9", publisher="Univerzita obrany", address="Brno", isbn="978-80-7231-417-1", url="http://mitav.unob.cz" }