Publication detail

Euler-Lagrange Equations of Networks with Higher-Order Elements

BIOLEK, Z. BIOLEK, D.

Original Title

Euler-Lagrange Equations of Networks with Higher-Order Elements

Type

journal article in Web of Science

Language

English

Original Abstract

The paper suggests a generalization of the classic Euler-Lagrange equation for circuits compounded of arbitrary elements from Chua's periodic table. Newly defined potential functions for general (alpha,beta) elements are used for the construction of generalized Lagrangians and generalized dissipative functions. Also procedures of drawing the Euler-Lagrange equations are demonstrated.

Keywords

Periodic table of fundamental elements; higher-order elements; content; energy; action; evolution; Lagrangian; dissipation function; FDNR; inerter

Authors

BIOLEK, Z.; BIOLEK, D.

Released

1. 6. 2017

Publisher

Společnost pro radioelektronické inženýrství

Location

Brno

ISBN

1210-2512

Periodical

Radioengineering

Year of study

26

Number

2

State

Czech Republic

Pages from

397

Pages to

405

Pages count

9

URL

BibTex

@article{BUT137613,
  author="Zdeněk {Biolek} and Dalibor {Biolek}",
  title="Euler-Lagrange Equations of Networks with Higher-Order Elements",
  journal="Radioengineering",
  year="2017",
  volume="26",
  number="2",
  pages="397--405",
  doi="10.13164/re.2017.0397",
  issn="1210-2512",
  url="https://www.radioeng.cz/fulltexts/2017/17_02_0397_0405.pdf"
}