Přístupnostní navigace
E-application
Search Search Close
Publication detail
ŘEHÁK, P. YAMAOKA, N.
Original Title
Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales
Type
journal article in Web of Science
Language
English
Original Abstract
We are concerned with the oscillation problem for second-order nonlinear dynamic equations on time scales of the form $x^{\Delta \Delta} + f(x)/(t \sigma(t)) = 0$, where $f(x)$ satisfies $x f(x) > 0$ if $x \neq 0$. By means of Riccati technique and phase plane analysis of a system, (non)oscillation criteria are established. A necessary and sufficient condition for all nontrivial solutions of the Euler-Cauchy dynamic equation $y^{\Delta \Delta} +\lambda/(t \sigma(t))\, y = 0$ to be oscillatory plays a crucial role in proving our results.
Keywords
Oscillation constant; Dynamic equations on time scales; Euler-Cauchy equation; Riccati technique; Phase plane analysis; Schauder fixed point theorem
Authors
ŘEHÁK, P.; YAMAOKA, N.
Released
7. 9. 2017
Publisher
Taylor and Francis
ISBN
1563-5120
Periodical
Journal of Difference Equations and Applications
Year of study
23
Number
11
State
United Kingdom of Great Britain and Northern Ireland
Pages from
1884
Pages to
1900
Pages count
17
BibTex
@article{BUT140805, author="Pavel {Řehák} and Naoto {Yamaoka}", title="Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales", journal="Journal of Difference Equations and Applications", year="2017", volume="23", number="11", pages="1884--1900", doi="10.1080/10236198.2017.1371146", issn="1563-5120" }