Přístupnostní navigace
E-application
Search Search Close
Publication detail
DEMCHENKO, H. DIBLÍK, J.
Original Title
Optimality conditions for a linear differential system with a single delay
Type
conference paper
Language
English
Original Abstract
In the contribution, linear differential system with a single delay $$\frac{dx(t)}{dt}= A_0x(t) + A_1x(t-\tau) + bu(t), t \geq t_0$$ where A_0, A_1 are $n \times n$ constant matrices, $x \in R^n$, $b \in R^n$, $\tau > 0$, $t_0 \in R$, $u \in R$, is considered. A problem of minimizing (by a suitable control function u(t)) a functional $$I =\int _t_0 ^ \infty (x^T(t)C_{11}x(t) + x^T (t)C_{12}x(t-\tau) + x^T (t-\tau)C_{21}x(t) + ^T (t-\tau)C_{22}x(t-\tau) + du^2(t))dt,$$ where $C_{11}$, $C_{12}$, $C_{21}$, $C_{22}$ are $n \times n$ constant matrices, $d > 0$, and the integrand is a positive-definite quadratic form, is considered. To solve the problem, Malkin’s approach and Lyapunov’s second method are utilized.
Keywords
delayed differential system, Lyapunov-Krasovskii functional, integral quality criterion, optimal control.
Authors
DEMCHENKO, H.; DIBLÍK, J.
Released
15. 6. 2017
Publisher
Univerzita obrany v Brně
Location
Brno
ISBN
978-80-7231-417-1
Book
Matematika, informační technologie a aplikované vědy (MITAV 2017)
Edition number
1
Pages from
Pages to
7
Pages count
URL
http://mitav.unob.cz/
BibTex
@inproceedings{BUT142610, author="Hanna {Demchenko} and Josef {Diblík}", title="Optimality conditions for a linear differential system with a single delay", booktitle="Matematika, informační technologie a aplikované vědy (MITAV 2017)", year="2017", number="1", pages="1--7", publisher="Univerzita obrany v Brně", address="Brno", isbn="978-80-7231-417-1", url="http://mitav.unob.cz/" }