Přístupnostní navigace
E-application
Search Search Close
Publication detail
DEMCHENKO, H.
Original Title
OPTIMALITY CONDITIONS FOR SCALAR LINEAR DIFFERENTIAL SYSTEM
Type
conference paper
Language
English
Original Abstract
In the contribution, for scalar linear differential system $$\frac{dx(t)}{dt}= Ax(t) +Bu(t),$$ where $A \in R^{n×n}$, $B \in R^{n×m}$, $x(t) \in R^n$ and $u(t) \in R^m$ is a control function, a problem of minimizing a function $$I[x(t),u(t)] =\int _t_0 ^ \infty (x^T(t)Cx(t) + u^T(t)Du(t))dt,$$ where $C \in R^{n×n}$ is a symmetric, positive definite matrix and $D$ is a diagonal control matrix, $D = diag{d_j}$, $d_j > 0$, $j = 1,...,m$, is considered. To solve the problem, Malkin’s approach and Lyapunov’s second method are utilized.
Keywords
optimization problem, control function, Lyapunov function.
Authors
Released
27. 4. 2017
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-5496-5
Book
Proceedings of the 23nd Conference STUDENT EEICT 2017
Edition number
1
Pages from
629
Pages to
633
Pages count
5
URL
http://eeict.feec.vutbr.cz/2017/sbornik/EEICT_2017-sbornik-komplet-2.pdf
BibTex
@inproceedings{BUT142611, author="Hanna {Demchenko}", title="OPTIMALITY CONDITIONS FOR SCALAR LINEAR DIFFERENTIAL SYSTEM", booktitle="Proceedings of the 23nd Conference STUDENT EEICT 2017", year="2017", number="1", pages="629--633", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5496-5", url="http://eeict.feec.vutbr.cz/2017/sbornik/EEICT_2017-sbornik-komplet-2.pdf" }