Přístupnostní navigace
E-application
Search Search Close
Publication detail
HOJNÁ, A. MICHALIČKA, J. HADRABA, H. DI GABRIELE, F. DUCHOŇ, J. ROZUMOVÁ, L. HUSÁK, R.
Original Title
Fracture Resistance of 14Cr ODS Steel Exposed to a High Temperature Gas
Type
journal article in Web of Science
Language
English
Original Abstract
This paper studies the impact fracture behavior of the 14%Cr Oxide Dispersion Strengthened (ODS) steel (ODM401) after high temperature exposures in helium and air in comparison to the as-received state. A steel bar was produced by mechanical alloying and hot-extrusion at 1150 °C. Further, it was cut into small specimens, which were consequently exposed to air or 99.9% helium in a furnace at 720 °C for 500 h. Impact energy transition curves are shifted towards higher temperatures after the gas exposures. The transition temperatures of the exposed states significantly increase in comparison to the as-received steel by about 40 °C in He and 60 °C in the air. Differences are discussed in terms of microstructure, surface and subsurface Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) observations. The embrittlement was explained as temperature and environmental effects resulting in a decrease of dislocation level, slight change of the particle composition and interface/grain boundary segregations, which consequently affected the nucleation of voids leading to the ductile fracture.
Keywords
nanostructured steel; thermal aging; impact fracture; microanalysis; oxidation
Authors
HOJNÁ, A.; MICHALIČKA, J.; HADRABA, H.; DI GABRIELE, F.; DUCHOŇ, J.; ROZUMOVÁ, L.; HUSÁK, R.
Released
1. 12. 2017
Publisher
MDPI
ISBN
2075-4701
Periodical
Metals
Year of study
7
Number
12
State
Swiss Confederation
Pages from
560-1
Pages to
560-17
Pages count
17
URL
https://www.mdpi.com/2075-4701/7/12/560
Full text in the Digital Library
http://hdl.handle.net/11012/137284