Publication detail

PARAMETERIZING GENERALIZED LAGUERRE FUNCTIONS TO COMPUTE THE INVERSE LAPLACE TRANSFORM OF FRACTIONAL ORDER TRANSFER FUNCTIONS

KÁRSKÝ, V.

Original Title

PARAMETERIZING GENERALIZED LAGUERRE FUNCTIONS TO COMPUTE THE INVERSE LAPLACE TRANSFORM OF FRACTIONAL ORDER TRANSFER FUNCTIONS

Type

journal article in Scopus

Language

English

Original Abstract

This article concentrates on using generalized Laguerre functions to compute the inverse Laplace transform of fractional order transfer functions. A novel method for selecting the timescale parameter of generalized Laguerre functions in the operator space is introduced and demonstrated on two systems with fractional order transfer functions.

Keywords

Fractional order systems, generalized Laguerre functions, free parameers, inverse Laplace transform

Authors

KÁRSKÝ, V.

Released

26. 6. 2018

Publisher

VUT Brno

Location

Brno, Czech Republic

ISBN

1803-3814

Periodical

Mendel Journal series

Year of study

2018

Number

24

State

Czech Republic

Pages from

79

Pages to

84

Pages count

6

URL

BibTex

@article{BUT148514,
  author="Vilém {Kárský}",
  title="PARAMETERIZING GENERALIZED LAGUERRE FUNCTIONS TO COMPUTE THE INVERSE LAPLACE TRANSFORM OF FRACTIONAL ORDER TRANSFER FUNCTIONS",
  journal="Mendel Journal series",
  year="2018",
  volume="2018",
  number="24",
  pages="79--84",
  doi="10.13164/mendel.2018.1.079",
  issn="1803-3814",
  url="https://mendel-journal.org/index.php/mendel/article/view/26/28"
}