Publication detail

Measurements of Time Characteristics of the Gradient Magnetic Field

KUBÁSEK, R. GESCHEIDTOVÁ, E. BARTUŠEK, K.

Original Title

Measurements of Time Characteristics of the Gradient Magnetic Field

Type

conference paper

Language

English

Original Abstract

Imaging techniques based on the principles of nuclear magnetic resonance (NMR) are modern techniques for the study of chemical, biological and physical properties of substances. The most important are their applications in medical sciences. MR imaging of a specimen weighted with diffusion coefficients requires very accurate data on the time course of the gradient pulse. Diffusion coefficients are determined from the drop of the MR signal measured with and without the application of magnetic field gradients. From the accuracy point of view, the defined course of gradients plays an important role in the computation of coefficients. A minimum rise and fall times, a defined magnitude of the excited gradient of the magnetic field and a symmetry of positive and negative pulses (zero integral of pulses of the same magnitude and opposite polarities) are required. To characterize the time course of gradient pulses or either polarity, simple methods of their measurement has been developed and experimentally tested on a 4.7 T tomograph. The method is based on the principle of instantaneous MR frequency measurements at the presence of a gradient pulse following the excitation of a thin layer situated outside the centre of the gradient field.

Keywords

NMR, MR, Gradient field, measurement.

Authors

KUBÁSEK, R.; GESCHEIDTOVÁ, E.; BARTUŠEK, K.

RIV year

2005

Released

1. 9. 2005

Publisher

IEEE

Location

Shanghai

ISBN

0-7803-8741-4

Book

Proceedings of 27th Anual International Conference of

Edition number

1

Pages from

1

Pages to

4

Pages count

4

BibTex

@inproceedings{BUT15059,
  author="Radek {Kubásek} and Eva {Gescheidtová} and Karel {Bartušek}",
  title="Measurements of Time Characteristics of the Gradient Magnetic Field",
  booktitle="Proceedings of 27th Anual International Conference of",
  year="2005",
  number="1",
  pages="4",
  publisher="IEEE",
  address="Shanghai",
  isbn="0-7803-8741-4"
}