Přístupnostní navigace
E-application
Search Search Close
Publication detail
HORNÍKOVÁ, J. ŠANDERA, P. ŽÁK, S. POKLUDA, J.
Original Title
Stress Intensity Factors for Cracks Emanating from a Notch under Shear-Mode Loading
Type
conference paper
Language
English
Original Abstract
The influence of the notch geometry on the stress intensity factor at the front of the emanating cracks is well known for the opening loading mode. The critical length of the crack corresponding to a vanishing of the influence of the notch stress concentration can be approximately expressed by the formula aI,c = 0.5ρ(d/ρ)1/3, where d and ρ are the depth and radius of the notch, respectively. The aim of the paper was to find out if this formula could be, at least nearly, applicable also to the case of shear mode loading. The related numerical calculations for mode II and III loading were performed using the ANSYS code for various combinations of notch depths and crack lengths in a cylindrical specimen with a circumferential U-notch. The results revealed that, for mode II loading, the critical length was much higher than that predicted by the formula for mode I loading. On the other hand, the critical lengths for mode I and mode III were found to be nearly equal.
Keywords
Critical Crack Length, Notch, Shear Modes, Stress Intensity Factor
Authors
HORNÍKOVÁ, J.; ŠANDERA, P.; ŽÁK, S.; POKLUDA, J.
Released
1. 8. 2018
Publisher
Trans Tech Publications
ISBN
9783035713503
Book
Key Engineering Materials: Advances in Fracture and Damage Mechanics XVII
1013-9826
Periodical
Key Engineering Materials (print)
Year of study
774
State
Swiss Confederation
Pages from
48
Pages to
53
Pages count
6
BibTex
@inproceedings{BUT151736, author="Jana {Horníková} and Pavel {Šandera} and Stanislav {Žák} and Jaroslav {Pokluda}", title="Stress Intensity Factors for Cracks Emanating from a Notch under Shear-Mode Loading", booktitle="Key Engineering Materials: Advances in Fracture and Damage Mechanics XVII", year="2018", journal="Key Engineering Materials (print)", volume="774", pages="48--53", publisher="Trans Tech Publications", doi="10.4028/www.scientific.net/KEM.774.48", isbn="9783035713503", issn="1013-9826" }