Přístupnostní navigace
E-application
Search Search Close
Publication detail
KOTOUL, M. SKALKA, P. PROFANT, T. ŘEHÁK, P. ŠESTÁK, P. FRIÁK, M.
Original Title
Prediction of the Critical Energy Release Rate of Nanostructured Solids using the Laplacian Version of the Strain Gradient Elasticity Theory
Type
conference paper
Language
English
Original Abstract
The aim of the paper is to quantify the material length scale parameter of the simplified form of the strain gradient elasticity theory (SGET) using first principles density-functional theory (DFT). The single material length scale parameter l is extracted from phonon-dispersions generated by DFT calculations and, for comparison, by adjusting the analytical SGET solution for the displacement field near the screw dislocation with the DFT calculations of this field. The obtained results are further used in the SGET modeling of cracked nano-panel formed by the single tungsten crystal where due to size effects and nonlocal material point interactions the classical fracture mechanics breaks down.
Keywords
Fracture nanomechanics, Strain gradient elasticity, DFT, FEM, size dependent phenomena
Authors
KOTOUL, M.; SKALKA, P.; PROFANT, T.; ŘEHÁK, P.; ŠESTÁK, P.; FRIÁK, M.
Released
1. 9. 2018
Publisher
Scientific Net
ISBN
1662-9809
Periodical
Key Engineering Materials (CD)
Year of study
774
Number
1
State
Swiss Confederation
Pages from
447
Pages to
452
Pages count
6
BibTex
@inproceedings{BUT151938, author="Michal {Kotoul} and Petr {Skalka} and Tomáš {Profant} and Petr {Řehák} and Petr {Šesták} and Martin {Friák}", title="Prediction of the Critical Energy Release Rate of Nanostructured Solids using the Laplacian Version of the Strain Gradient Elasticity Theory", booktitle="Advances in Fracture and Damage Mechanics XVII", year="2018", journal="Key Engineering Materials (CD)", volume="774", number="1", pages="447--452", publisher="Scientific Net", doi="10.4028/www.scientific.net/KEM.774.447", issn="1662-9809" }