Přístupnostní navigace
E-application
Search Search Close
Publication detail
KADLUBIAK, K. JAROŠ, J. TREEBY, B.
Original Title
GPU-accelerated Simulation of Elastic Wave Propagation
Type
conference paper
Language
English
Original Abstract
Modeling of ultrasound waves propagation in hard biological materials such as bones and skull has a rapidly growing area of applications, e.g. brain cancer treatment planing, deep brain neurostimulation and neuromodulation, and opening blood brain barriers. Recently, we have developed a novel numerical model of elastic wave propagation based on the Kelvin-Voigt model accounting for linear elastic wave proration in heterogeneous absorption media. Although, the model offers unprecedented fidelity, its computational requirements have been prohibitive for realistic simulations. This paper presents an optimized version of the simulation model accelerated by the Nvidia CUDA language and deployed on the best GPUs including the Nvidia P100 accelerators present in the Piz Daint supercomputer. The native CUDA code reaches a speed-up of 5.4 when compared to the Matlab prototype accelerated by the Parallel Computing Toolbox running on the same GPU. Such reduction in computation time enables computation of large-scale treatment plans in terms of hours.
Keywords
Ultrasound simulations, Elastic model, Pseudospectral methods, k-Wave toolbox, GPU
Authors
KADLUBIAK, K.; JAROŠ, J.; TREEBY, B.
Released
29. 10. 2018
Publisher
IEEE Computer Society
Location
Orleans
ISBN
978-1-5386-7878-7
Book
Proceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018
Pages from
188
Pages to
195
Pages count
8
URL
https://ieeexplore.ieee.org/document/8514349
BibTex
@inproceedings{BUT155002, author="Kristián {Kadlubiak} and Jiří {Jaroš} and Bradley {Treeby}", title="GPU-accelerated Simulation of Elastic Wave Propagation", booktitle="Proceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018", year="2018", pages="188--195", publisher="IEEE Computer Society", address="Orleans", doi="10.1109/HPCS.2018.00044", isbn="978-1-5386-7878-7", url="https://ieeexplore.ieee.org/document/8514349" }
Documents
HPCS paper.pdf