Přístupnostní navigace
E-application
Search Search Close
Publication detail
MYŠKA, V.
Original Title
Language-Independent Text Classifier Base on Recurrent Neural Networks
Type
conference paper
Language
English
Original Abstract
This paper deals with a proposal of language independent text classifiers based on recurrent neural networks. They work at a character level thus they do not require any text preprocessing. The classifiers have been trained and evaluated on a multilingual data set that is privately collected from film review databases. It contains Czech (Slovak), English, German and Spanish language subset. The resulting accuracy of the proposed language independent classifiers base on the recurrent neural networks in polarity sentiment analysis task is 78.55%.
Keywords
sentiment analysis;recurrent neural networks;deep learning
Authors
Released
25. 4. 2019
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-5735-5
Book
Proceedings of the 25th Conference STUDENT EEICT 2019
Pages from
754
Pages to
758
Pages count
5
BibTex
@inproceedings{BUT157417, author="Vojtěch {Myška}", title="Language-Independent Text Classifier Base on Recurrent Neural Networks", booktitle="Proceedings of the 25th Conference STUDENT EEICT 2019", year="2019", pages="754--758", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5735-5" }