Přístupnostní navigace
E-application
Search Search Close
Publication detail
JAKUBÍČEK, R. CHMELÍK, J. OUŘEDNÍČEK, P. JAN, J.
Original Title
Deep-learning-based fully automatic spine centerline detection in CT data
Type
conference paper
Language
English
Original Abstract
In this contribution, we present a fully automatic approach, that is based on two convolution neural networks (CNN) together with a spine tracing algorithm utilizing a population optimization algorithm. Based on the evaluation of 130 CT scans including heavily distorted and complicated cases, it turned out that this new combination enables fast and robust detection with almost 90% of correctly determined spinal centerlines with computing time of fewer than 20 seconds.
Keywords
CT; spine centerline; machine learning
Authors
JAKUBÍČEK, R.; CHMELÍK, J.; OUŘEDNÍČEK, P.; JAN, J.
Released
7. 10. 2019
Publisher
IEEE
Location
Berlin, Germany
ISBN
978-1-5386-1312-2
Book
2019 41th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Edition number
19
1557-170X
Periodical
Proceedings IEEE EMBC
Year of study
State
United States of America
Pages from
2407
Pages to
2410
Pages count
4
URL
https://ieeexplore.ieee.org/document/8856528
BibTex
@inproceedings{BUT157840, author="Roman {Jakubíček} and Jiří {Chmelík} and Petr {Ouředníček} and Jiří {Jan}", title="Deep-learning-based fully automatic spine centerline detection in CT data", booktitle="2019 41th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)", year="2019", journal="Proceedings IEEE EMBC", volume="19", number="19", pages="2407--2410", publisher="IEEE", address="Berlin, Germany", doi="10.1109/EMBC.2019.8856528", isbn="978-1-5386-1312-2", issn="1557-170X", url="https://ieeexplore.ieee.org/document/8856528" }