Přístupnostní navigace
E-application
Search Search Close
Publication detail
VRÁBEL, J. POŘÍZKA, P. KAISER, J.
Original Title
Restricted Boltzmann Machine Method for Dimensionality Reduction of Spectroscopic Data
Type
conference proceedings
Language
English
Original Abstract
Multivariate data obtained using, for instance, Laser-Induced Breakdown Spectroscopy (LIBS) are quite bulky and complex. Advanced processing of spectroscopic data demands a multidisciplinary approach covering not only modern machine learning tools but also a deep understanding of underlying physical mechanisms. Strong non-linearities of those mechanisms are inducing problems in their processing using standard linear algorithms. Artificial Neural Networks (ANN) seem suitable for this task, and based on their success, they are given considerable attention within the spectroscopic community. We propose a new methodology based on Restricted Boltzmann Machine (ANN method) for dimensionality reduction of spectroscopic data and compare it to well known linear techniques such as PCA. Moreover, we apply this technique to the processing and mapping of very high-dimensional LIBS data.
Keywords
LIBS, Machine Learning, RBM, Neural Networks, Spectroscopy, Data, Dimension Reduction
Authors
VRÁBEL, J.; POŘÍZKA, P.; KAISER, J.
Released
8. 9. 2019
Publisher
Spektroskopická společnost Jana Marka Marci
Location
Ke Karlovu 2027/3, 120 00 Praha 2 - Nové Město
ISBN
978-80-88195-13-9
Book
EMSLIBS 2019 Book of abstracts
Pages count
293
URL
http://libs.ceitec.cz/files/281/213.pdf
BibTex
@proceedings{BUT159096, editor="Jakub {Vrábel} and Pavel {Pořízka} and Jozef {Kaiser}", title="Restricted Boltzmann Machine Method for Dimensionality Reduction of Spectroscopic Data", year="2019", pages="293", publisher="Spektroskopická společnost Jana Marka Marci", address="Ke Karlovu 2027/3, 120 00 Praha 2 - Nové Město", isbn="978-80-88195-13-9", url="http://libs.ceitec.cz/files/281/213.pdf" }