Přístupnostní navigace
E-application
Search Search Close
Publication detail
KISELA, T. DOLNÍK, M.
Original Title
Lerch's theorem on nabla time scales
Type
journal article in Web of Science
Language
English
Original Abstract
The paper discusses uniqueness of Laplace transform considered on nabla time scales. As the main result, a nabla time scales analogue of Lerch's theorem ensuring uniqueness of Laplace image is proved for so-called simply periodic time scales. Moreover, several presented counterexamples demonstrate that the uniqueness of Laplace image does not occur on general time scales when the nabla approach is employed. Other special properties of Laplace transform on nabla time scales, such as potential disconnectedness of domain of convergence, are addressed as well.
Keywords
Lerch's theorem; Laplace transform; time scales theory; uniqueness; fractional calculus
Authors
KISELA, T.; DOLNÍK, M.
Released
25. 10. 2019
Publisher
Walter de Gruyter GmbH
Location
GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
ISBN
0139-9918
Periodical
Mathematica Slovaca
Year of study
69
Number
5
State
Slovak Republic
Pages from
1127
Pages to
1136
Pages count
10
URL
https://www.degruyter.com/view/j/ms.2019.69.issue-5/ms-2017-0295/ms-2017-0295.xml
BibTex
@article{BUT159356, author="Tomáš {Kisela} and Matej {Dolník}", title="Lerch's theorem on nabla time scales", journal="Mathematica Slovaca", year="2019", volume="69", number="5", pages="1127--1136", doi="10.1515/ms-2017-0295", issn="0139-9918", url="https://www.degruyter.com/view/j/ms.2019.69.issue-5/ms-2017-0295/ms-2017-0295.xml" }