Přístupnostní navigace
E-application
Search Search Close
Publication detail
KRČMA, M. KOTÁSEK, Z. LOJDA, J.
Original Title
Detecting hard synapses faults in artificial neural networks
Type
conference paper
Language
English
Original Abstract
This paper presents the concepts of detecting hard faults in artificial neural network synapses using the modification of the neural network settings. The core of this work is based on weights values modification and inserting the chosen testing data when comparing the neural network output to the known valid results. The paper also discuss the problem of neural network output saturation and provide experiments on influence of the neural network settings to the problem in this regard.
Keywords
artificial neural networks, hard faults, faults detection, fault tolerance
Authors
KRČMA, M.; KOTÁSEK, Z.; LOJDA, J.
Released
11. 3. 2019
Publisher
IEEE Computer Society
Location
Santiago de Chile
ISBN
978-1-7281-1756-0
Book
20th IEEE Latin American Test Symposium (LATS 2019)
Pages from
1
Pages to
6
Pages count
URL
https://www.fit.vut.cz/research/publication/11876/
BibTex
@inproceedings{BUT159964, author="Martin {Krčma} and Zdeněk {Kotásek} and Jakub {Lojda}", title="Detecting hard synapses faults in artificial neural networks", booktitle="20th IEEE Latin American Test Symposium (LATS 2019)", year="2019", pages="1--6", publisher="IEEE Computer Society", address="Santiago de Chile", doi="10.1109/LATW.2019.8704637", isbn="978-1-7281-1756-0", url="https://www.fit.vut.cz/research/publication/11876/" }