Přístupnostní navigace
E-application
Search Search Close
Publication detail
MAYORGA-MARTINEZ, C. SOFER, Z. PUMERA, M.
Original Title
Binary Phosphorene Redox Behavior in Oxidoreductase Enzymatic Systems
Type
journal article in Web of Science
Language
English
Original Abstract
Phosphorene is a two-dimensional material that has many advantageous electronic, electrochemical, and optical properties. However, phosphorene possesses a relatively poor stability in ambient atmosphere. This disadvantage limits its application in several systems and particularly in electrochemical biosensors. Here we evaluate phosphorene as an electrochemical biosensing platform in two different mediator-based oxidoreductase enzymatic systems (glucose oxidase (GOx) and peroxidase from horseradish (HRP)), in which their detection is based on the reduction or oxidation of a mediator. In both cases, the used mediator is the same, ferrocene methanol (FcMeOH). Enhanced electrochemical activity is observed only in the reductive system (HRP-based biosensor) when compared to the oxidative counterpart (GOx-based biosensor). This phenomenon is attributed to the fact that in a reductive environment the phosphorene structure remains intact, while in an oxidative potential, the phosphorene is readily oxidized. In this way, the electroactivity of phosphorene as a sensing platform is strongly dependent on the type of mediator-based enzymatic system. These findings of binary nature of phosphorene are of high importance for construction of phosphorene-sensing platforms and in the development of enzyme logic systems
Keywords
black phosphorus, oxidoreductase enzymes, mediator-based enzymatic biosensor, second-generation biosensor
Authors
MAYORGA-MARTINEZ, C.; SOFER, Z.; PUMERA, M.
Released
17. 10. 2019
ISBN
1936-0851
Periodical
ACS Nano
Year of study
13
Number
11
State
United States of America
Pages from
13217
Pages to
13224
Pages count
8
URL
https://pubs.acs.org/doi/full/10.1021/acsnano.9b06230
BibTex
@article{BUT160763, author="Carmen C. {Mayorga-Martinez} and Zdeněk {Sofer} and Martin {Pumera}", title="Binary Phosphorene Redox Behavior in Oxidoreductase Enzymatic Systems", journal="ACS Nano", year="2019", volume="13", number="11", pages="13217--13224", doi="10.1021/acsnano.9b06230", issn="1936-0851", url="https://pubs.acs.org/doi/full/10.1021/acsnano.9b06230" }