Přístupnostní navigace
E-application
Search Search Close
Publication detail
PUTRI, D. LEU, J. ŠEDA, P.
Original Title
Design of an Unsupervised Machine Learning-Based Movie Recommender System
Type
journal article in Web of Science
Language
English
Original Abstract
This research aims to determine the similarities in groups of people to build a film recommender system for users. Users often have difficulty in finding suitable movies due to the increasing amount of movie information. The recommender system is very useful for helping customers choose a preferred movie with the existing features. In this study, the recommender system development is established by using several algorithms to obtain groupings, such as the K-Means algorithm, birch algorithm, mini-batch K-Means algorithm, mean-shift algorithm, affinity propagation algorithm, agglomerative clustering algorithm, and spectral clustering algorithm. We~propose methods optimizing K so that each cluster may not significantly increase variance. We~are limited to using groupings based on Genre and Tags for movies. This research can discover better methods for evaluating clustering algorithms. To verify the quality of the recommender system, we adopted the mean square error (MSE), such as the Dunn Matrix and Cluster Validity Indices, and social network analysis (SNA), such as Degree Centrality, Closeness Centrality, and~Betweenness Centrality. We also used average similarity, computational time, association rule with Apriori algorithm, and clustering performance evaluation as evaluation measures to compare method performance of recommender systems using Silhouette Coefficient, Calinski-Harabaz Index, and~Davies--Bouldin Index.
Keywords
affinity propagation; agglomerative spectral clustering; association rule with Apriori algorithm; average similarity; birch; clustering performance evaluation; computational time; Dunn~Matrix; mean-shift; mean squared error; mini-batch K-Means; recommendations system; K-Means; social network analysis
Authors
PUTRI, D.; LEU, J.; ŠEDA, P.
Released
21. 1. 2020
Publisher
MDPI
ISBN
2073-8994
Periodical
Symmetry
Year of study
12
Number
2
State
Swiss Confederation
Pages from
185
Pages to
211
Pages count
27
URL
https://www.mdpi.com/2073-8994/12/2/185
Full text in the Digital Library
http://hdl.handle.net/11012/193383
BibTex
@article{BUT161377, author="Debby Cintia Ganesha {Putri} and Jenq-Shiou {Leu} and Pavel {Šeda}", title="Design of an Unsupervised Machine Learning-Based Movie Recommender System", journal="Symmetry", year="2020", volume="12", number="2", pages="185--211", doi="10.3390/sym12020185", issn="2073-8994", url="https://www.mdpi.com/2073-8994/12/2/185" }