Přístupnostní navigace
E-application
Search Search Close
Publication detail
ANSARI, M. MRÁZEK, V. COCKBURN, B. SEKANINA, L. VAŠÍČEK, Z. HAN, J.
Original Title
Improving the Accuracy and Hardware Efficiency of Neural Networks Using Approximate Multipliers
Type
journal article in Web of Science
Language
English
Original Abstract
Improving the accuracy of a neural network (NN) usually requires using larger hardware that consumes more energy. However, the error tolerance of NNs and their applications allow approximate computing techniques to be applied to reduce implementation costs. Given that multiplication is the most resource-intensive and power-hungry operation in NNs, more economical approximate multipliers (AMs) can significantly reduce hardware costs. In this article, we show that using AMs can also improve the NN accuracy by introducing noise. We consider two categories of AMs: 1) deliberately designed and 2) Cartesian genetic programing (CGP)-based AMs. The exact multipliers in two representative NNs, a multilayer perceptron (MLP) and a convolutional NN (CNN), are replaced with approximate designs to evaluate their effect on the classification accuracy of the Mixed National Institute of Standards and Technology (MNIST) and Street View House Numbers (SVHN) data sets, respectively. Interestingly, up to 0.63% improvement in the classification accuracy is achieved with reductions of 71.45% and 61.55% in the energy consumption and area, respectively. Finally, the features in an AM are identified that tend to make one design outperform others with respect to NN accuracy. Those features are then used to train a predictor that indicates how well an AM is likely to work in an NN.
Keywords
approximate multipliers, Cartesian genetic programming, convolutional neural network, multi-layer perceptron, neural networks
Authors
ANSARI, M.; MRÁZEK, V.; COCKBURN, B.; SEKANINA, L.; VAŠÍČEK, Z.; HAN, J.
Released
22. 1. 2020
ISBN
1063-8210
Periodical
IEEE Trans. on VLSI Systems.
Year of study
28
Number
2
State
United States of America
Pages from
317
Pages to
328
Pages count
12
URL
https://www.fit.vut.cz/research/publication/12066/
BibTex
@article{BUT161464, author="ANSARI, M. and MRÁZEK, V. and COCKBURN, B. and SEKANINA, L. and VAŠÍČEK, Z. and HAN, J.", title="Improving the Accuracy and Hardware Efficiency of Neural Networks Using Approximate Multipliers", journal="IEEE Trans. on VLSI Systems.", year="2020", volume="28", number="2", pages="317--328", doi="10.1109/TVLSI.2019.2940943", issn="1063-8210", url="https://www.fit.vut.cz/research/publication/12066/" }