Přístupnostní navigace
E-application
Search Search Close
Publication detail
ELIÁŠ, J.
Original Title
Elastic properties of isotropic discrete systems: Connections between geometric structure and Poisson's ratio
Type
journal article in Web of Science
Language
English
Original Abstract
The use of discrete material representation in numerical models is advantageous due to the straightforward way it takes into account material heterogeneity and randomness, and the discrete and orientated nature of cracks. Unfortunately, it also restricts the macroscopic Poisson’s ratio and therefore narrows its applicability. The paper studies the Poisson’s ratio of a discrete model analytically. It derives theoretical limits for cases where the geometry of the model is completely arbitrary, but isotropic in the statistical sense. It is shown that the widest limits are obtained for models where normal directions of contacts between discrete units are parallel with the vectors connecting these units. Any deviation from parallelism causes the Poisson’s ratio limits to shrink. A comparison of the derived equations to the results of the actual numerical model is presented. It shows relatively large deviations from the theory because the fundamental assumptions behind the theoretical derivations are largely violated in systems with complex geometry. The real shrinking of the Poisson’s ratio limit is less severe compared to that which is theoretically derived.
Keywords
Lattice model; Geometry; Elasticity; Poisson’s ratio; Mesoscale; Macroscopic characteristics
Authors
Released
1. 3. 2020
ISBN
0020-7683
Periodical
International Journal of Solids and Structures
Year of study
191-192
Number
1
State
United Kingdom of Great Britain and Northern Ireland
Pages from
254
Pages to
263
Pages count
10
URL
https://doi.org/10.1016/j.ijsolstr.2019.12.012
BibTex
@article{BUT162660, author="Jan {Eliáš}", title="Elastic properties of isotropic discrete systems: Connections between geometric structure and Poisson's ratio", journal="International Journal of Solids and Structures", year="2020", volume="191-192", number="1", pages="254--263", doi="10.1016/j.ijsolstr.2019.12.012", issn="0020-7683", url="https://doi.org/10.1016/j.ijsolstr.2019.12.012" }