Publication detail

Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages

WIESNER, M. LIU, C. ONDEL YANG, L. HARMAN, C. MANOHAR, V. TRMAL, J. HUANG, Z. DEHAK, N. KHUDANPUR, S.

Original Title

Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages

Type

conference paper

Language

English

Original Abstract

Automatic speech recognition (ASR) systems often need to bedeveloped for extremely low-resource languages to serve endusessuch as audio content categorization and search. Whileuniversal phone recognition is natural to consider when no transcribedspeech is available to train an ASR system in a language,adapting universal phone models using very small amounts(minutes rather than hours) of transcribed speech also needs tobe studied, particularly with state-of-the-art DNN-based acousticmodels. The DARPA LORELEI program provides a frameworkfor such very-low-resource ASR studies, and provides anextrinsic metric for evaluating ASR performance in a humanitarianassistance, disaster relief setting. This paper presentsour Kaldi-based systems for the program, which employ a universalphone modeling approach to ASR, and describes recipesfor very rapid adaptation of this universal ASR system. Theresults we obtain significantly outperform results obtained bymany competing approaches on the NIST LoReHLT 2017 Evaluationdatasets

Keywords

Universal acoustic models, topic identification,cross-language information retrieval, transfer learning, lowresourcespeech recognition

Authors

WIESNER, M.; LIU, C.; ONDEL YANG, L.; HARMAN, C.; MANOHAR, V.; TRMAL, J.; HUANG, Z.; DEHAK, N.; KHUDANPUR, S.

Released

2. 9. 2018

Publisher

International Speech Communication Association

Location

Hyderabad

ISBN

1990-9772

Periodical

Proceedings of Interspeech

Year of study

2018

Number

9

State

French Republic

Pages from

2052

Pages to

2056

Pages count

5

URL

BibTex

@inproceedings{BUT163405,
  author="WIESNER, M. and LIU, C. and ONDEL YANG, L. and HARMAN, C. and MANOHAR, V. and TRMAL, J. and HUANG, Z. and DEHAK, N. and KHUDANPUR, S.",
  title="Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages",
  booktitle="Proceedings of Interspeech",
  year="2018",
  journal="Proceedings of Interspeech",
  volume="2018",
  number="9",
  pages="2052--2056",
  publisher="International Speech Communication Association",
  address="Hyderabad",
  doi="10.21437/Interspeech.2018-1836",
  issn="1990-9772",
  url="https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1836.html"
}

Documents