Publication detail

Unsupervised Word Segmentation from Speech with Attention

GODARD, P. BOITO, M. ONDEL YANG, L. BERARD, A. YVON, F. VILLAVICENCIO, A. BESACIER, L.

Original Title

Unsupervised Word Segmentation from Speech with Attention

Type

conference paper

Language

English

Original Abstract

We present a first attempt to perform attentional word segmentationdirectly from the speech signal, with the final goal toautomatically identify lexical units in a low-resource, unwrittenlanguage (UL). Our methodology assumes a pairing betweenrecordings in the UL with translations in a well-resourcedlanguage. It uses Acoustic Unit Discovery (AUD) to convertspeech into a sequence of pseudo-phones that is segmented usingneural soft-alignments produced by a neural machine translationmodel. Evaluation uses an actual Bantu UL, Mboshi;comparisons to monolingual and bilingual baselines illustratethe potential of attentional word segmentation for language documentation.

Keywords

computational language documentation,encoder-decoder models, attentional models, unsupervised word segmentation.

Authors

GODARD, P.; BOITO, M.; ONDEL YANG, L.; BERARD, A.; YVON, F.; VILLAVICENCIO, A.; BESACIER, L.

Released

2. 9. 2018

Publisher

International Speech Communication Association

Location

Hyderabad

ISBN

1990-9772

Periodical

Proceedings of Interspeech

Year of study

2018

Number

9

State

French Republic

Pages from

2678

Pages to

2682

Pages count

5

URL

BibTex

@inproceedings{BUT163406,
  author="GODARD, P. and BOITO, M. and ONDEL YANG, L. and BERARD, A. and YVON, F. and VILLAVICENCIO, A. and BESACIER, L.",
  title="Unsupervised Word Segmentation from Speech with Attention",
  booktitle="Proceeding of Interspeech 2018",
  year="2018",
  journal="Proceedings of Interspeech",
  volume="2018",
  number="9",
  pages="2678--2682",
  publisher="International Speech Communication Association",
  address="Hyderabad",
  doi="10.21437/Interspeech.2018-1308",
  issn="1990-9772",
  url="https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1308.pdf"
}

Documents