Přístupnostní navigace
E-application
Search Search Close
Publication detail
GODARD, P. BOITO, M. ONDEL YANG, L. BERARD, A. YVON, F. VILLAVICENCIO, A. BESACIER, L.
Original Title
Unsupervised Word Segmentation from Speech with Attention
Type
conference paper
Language
English
Original Abstract
We present a first attempt to perform attentional word segmentation directly from the speech signal, with the final goal to automatically identify lexical units in a low-resource, unwritten language (UL). Our methodology assumes a pairing between recordings in the UL with translations in a well-resourced language. It uses Acoustic Unit Discovery (AUD) to convert speech into a sequence of pseudo-phones that is segmented using neural soft-alignments produced by a neural machine translation model. Evaluation uses an actual Bantu UL, Mboshi; comparisons to monolingual and bilingual baselines illustrate the potential of attentional word segmentation for language documentation.
Keywords
computational language documentation,encoder-decoder models, attentional models, unsupervised word segmentation.
Authors
GODARD, P.; BOITO, M.; ONDEL YANG, L.; BERARD, A.; YVON, F.; VILLAVICENCIO, A.; BESACIER, L.
Released
2. 9. 2018
Publisher
International Speech Communication Association
Location
Hyderabad
ISBN
1990-9772
Periodical
Proceedings of Interspeech
Year of study
2018
Number
9
State
French Republic
Pages from
2678
Pages to
2682
Pages count
5
URL
https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1308.pdf
BibTex
@inproceedings{BUT163406, author="GODARD, P. and BOITO, M. and ONDEL YANG, L. and BERARD, A. and YVON, F. and VILLAVICENCIO, A. and BESACIER, L.", title="Unsupervised Word Segmentation from Speech with Attention", booktitle="Proceeding of Interspeech 2018", year="2018", journal="Proceedings of Interspeech", volume="2018", number="9", pages="2678--2682", publisher="International Speech Communication Association", address="Hyderabad", doi="10.21437/Interspeech.2018-1308", issn="1990-9772", url="https://www.isca-speech.org/archive/Interspeech_2018/pdfs/1308.pdf" }