Přístupnostní navigace
E-application
Search Search Close
Publication detail
KÄLVIÄINEN, H. EEROLA, T. LENSU, L. ILONEN, J. ZEMČÍK, P. JURÁNKOVÁ, M. JURÁNEK, R.
Original Title
Comparison of bubble detectors and size distribution estimators
Type
journal article in Web of Science
Language
English
Original Abstract
Detection, counting and characterization of bubbles, that is, transparent objects in a liquid, is important in many industrial applications. These applications include monitoring of pulp delignification and multiphase dispersion processes common in the chemical, pharmaceutical, and food industries. Typically the aim is to measure the bubble size distribution. In this paper, we present a comprehensive comparison of bubble detection methods for challenging industrial image data. Moreover, we compare the detection-based methods to a direct bubble size distribution estimation method that does not require the detection of individual bubbles. The experiments showed that the approach based on a convolutional neural network (CNN) outperforms the other methods in detection accuracy. However, the boosting-based approaches were remarkably faster to compute. The power spectrum approach for direct bubble size distribution estimation produced accurate distributions and it is fast to compute, but it does not provide the spatial locations of the bubbles. Selecting the most suitable method depends on the specific application.
Keywords
Bubble detection Size distribution estimation Boosting-based detection Convolutional neural networks (CNN) Pulping
Authors
KÄLVIÄINEN, H.; EEROLA, T.; LENSU, L.; ILONEN, J.; ZEMČÍK, P.; JURÁNKOVÁ, M.; JURÁNEK, R.
Released
1. 1. 2018
ISBN
0167-8655
Periodical
PATTERN RECOGNITION LETTERS
Year of study
101
Number
1
State
Kingdom of the Netherlands
Pages from
60
Pages to
66
Pages count
7
URL
https://www.sciencedirect.com/science/article/pii/S0167865517304282
BibTex
@article{BUT163408, author="KÄLVIÄINEN, H. and EEROLA, T. and LENSU, L. and ILONEN, J. and ZEMČÍK, P. and JURÁNKOVÁ, M. and JURÁNEK, R.", title="Comparison of bubble detectors and size distribution estimators", journal="PATTERN RECOGNITION LETTERS", year="2018", volume="101", number="1", pages="60--66", doi="10.1016/j.patrec.2017.11.014", issn="0167-8655", url="https://www.sciencedirect.com/science/article/pii/S0167865517304282" }
Documents
publikace_text.pdf