Přístupnostní navigace
E-application
Search Search Close
Publication detail
DORAZIL, J. REPP, R. KROPFREITER, T. PRÜLLER, R. ŘÍHA, K. HLAWATSCH, F.
Original Title
Feature Drift Resilient Tracking of the Carotid Artery Wall Using Unscented Kalman Filtering With Data Fusion
Type
conference paper
Language
English
Original Abstract
An analysis of the motion of the common carotid artery (CCA) provides effective indicators for cardiovascular diseases. Here, we propose a method for tracking CCA wall motion from a B-mode ultrasound video sequence. An unscented Kalman filter based on a suitably devised state-space model fuses measurements produced by an optical flow algorithm and a CCA wall localization algorithm. This approach compensates for feature drift, which is a detrimental effect in optical flow algorithms. The proposed method is demonstrated to outperform a state-of-the-art tracking method based on optical flow.
Keywords
Atherosclerosis; common carotid artery; B-mode ultrasound; unscented Kalman filter; data fusion
Authors
DORAZIL, J.; REPP, R.; KROPFREITER, T.; PRÜLLER, R.; ŘÍHA, K.; HLAWATSCH, F.
Released
4. 5. 2020
ISBN
978-1-5090-6631-5
Book
Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
0736-7791
Periodical
Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
State
unknown
Pages from
1095
Pages to
1099
Pages count
5
URL
https://doi.org/10.1109/ICASSP40776.2020.9054703
BibTex
@inproceedings{BUT164233, author="Jan {Dorazil} and Rene {Repp} and Thomas {Kropfreiter} and Richard {Prüller} and Kamil {Říha} and Franz {Hlawatsch}", title="Feature Drift Resilient Tracking of the Carotid Artery Wall Using Unscented Kalman Filtering With Data Fusion", booktitle="Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)", year="2020", journal="Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing", pages="1095--1099", doi="10.1109/ICASSP40776.2020.9054703", isbn="978-1-5090-6631-5", issn="0736-7791", url="https://doi.org/10.1109/ICASSP40776.2020.9054703" }