Přístupnostní navigace
E-application
Search Search Close
Publication detail
LIEBERMAN, M. VASEY, S. ROSICKÝ, J.
Original Title
Sizes and filtrations in accessible categories
Type
journal article in Web of Science
Language
English
Original Abstract
Accessible categories admit a purely category-theoretic replacement for cardinality: the internal size. Generalizing results and methods from [LRV19b], we examine set-theoretic problems related to internal sizes and prove several Lowenheim-Skolem theorems for accessible categories. For example, assuming the singular cardinal hypothesis, we show that a large accessible category has an object in all internal sizes of high-enough co-finality. We also prove that accessible categories with directed colimits have filtrations: any object of sufficiently high internal size is (the retract of) a colimit of a chain of strictly smaller objects.
Keywords
accessible categories; internal size; cardinal arithmetic
Authors
LIEBERMAN, M.; VASEY, S.; ROSICKÝ, J.
Released
20. 5. 2020
Publisher
HEBREW UNIV MAGNES PRESS
Location
JERUSALEM
ISBN
0021-2172
Periodical
ISRAEL JOURNAL OF MATHEMATICS
Year of study
238
Number
1
State
State of Israel
Pages from
243
Pages to
278
Pages count
36
URL
https://link.springer.com/article/10.1007/s11856-020-2018-8
BibTex
@article{BUT164521, author="Michael Joseph {Lieberman} and Sebastien {Vasey} and Jiří {Rosický}", title="Sizes and filtrations in accessible categories", journal="ISRAEL JOURNAL OF MATHEMATICS", year="2020", volume="238", number="1", pages="243--278", doi="10.1007/s11856-020-2018-8", issn="0021-2172", url="https://link.springer.com/article/10.1007/s11856-020-2018-8" }